
Lists



Abstract List

An Abstract List (or List ADT) is linearly ordered data where the programmer
explicitly defines the ordering

We will look at the most common operations that are usually
The most obvious implementation is to use either an array or linked list
These are, however, not always the most optimal



Operations

Operations at the th entry of the list include:

Access to the object 

Insertion of a new object 

Replacement of the object 

k



Erasing an object 



Given access to the th object, gain access to either the previous or next object 

Given two abstract lists, we may want to

Concatenate the two lists
Determine if one is a sub-list of the other

k



Singly Linked List

A linked list is a data structure consisting of a sequence of object where each object
is stored in a node

As well as storing data, the node must also contains a reference/pointer to the node
containing the next item of data



Node List ADT

The Node List ADT models a sequence of positions storing arbitrary objects

It establishes a before/after relation between positions
The node are dynamically created in a linked list

A Node  class must store the data and a reference to the next node (also a pointer)



In [3]: class Node { 

public: 

    Node( int = 0, Node* = nullptr ); 

 

    int value() const; 

    Node* next() const; 

 

private: 

    int node_value; 

    Node *next_node; 

}; 



Accessors

The two member functions are accessors which simply return the node_value  and
the next_node  member variables, respectively

Member functions that do not change the object acted upon are variously
called accessors, readonly functions, inspectors, and, when it involves
simply returning a member variable, getters



Accessors

The two member functions are accessors which simply return the node_value  and
the next_node  member variables, respectively

Member functions that do not change the object acted upon are variously
called accessors, readonly functions, inspectors, and, when it involves
simply returning a member variable, getters

In [4]: int Node::value() const { 

    return node_value; 

} 



Accessors

The two member functions are accessors which simply return the node_value  and
the next_node  member variables, respectively

Member functions that do not change the object acted upon are variously
called accessors, readonly functions, inspectors, and, when it involves
simply returning a member variable, getters

In [4]: int Node::value() const { 

    return node_value; 

} 

In [5]: Node* Node::next() const { 

    return next_node;

} 



Constructor

The constructor assigns the two member variables based on the arguments



Constructor

The constructor assigns the two member variables based on the arguments

In [6]: Node::Node( int e, Node *n ): node_value( e ), next_node( n ) { 

    // empty constructor 

} 



Constructor

The constructor assigns the two member variables based on the arguments

In [6]: Node::Node( int e, Node *n ): node_value( e ), next_node( n ) { 

    // empty constructor 

} 

In [7]: { 

    Node n1; 

    cout << n1.value() << " " << n1.next() << endl; 

    Node n2{12}; 

    cout << n2.value() << " " << n2.next() << endl; 

    Node n3{12, &n2}; 

    cout << n3.value() << " " << n3.next() << endl; 

} 

0 0 

12 0 

12 0x7ffe169e60a8 



Accessors (cont.)

In C++, a member function cannot have the same name as a member variable

Member Variables Member Functions
Vary capitalization next_node Next_node() or NextNode()

Prefix with "get" next_node get_next_node() / getNextNode()
Use an underscore nextnode next_node()

Different names next_node next()

Always use the naming convention and coding styles used by your employer - even if
you disagree with them

Consistency aids in maintenance



Linked List Class

Because each node in a linked lists refers to the next, the linked list class need only
link to the first node in the list

The linked list class requires member variable: a pointer to a node

class List { 

    public: 

        class Node {...}; 

 

    private: 

        Node *list_head; 

    // ... 

}; 



Structure

To begin, let us look at the internal representation of a linked list

Suppose we want a linked list to store the values in this order

42 95 70 81



Structure (cont.)

A linked list uses linked allocation, and therefore each node may appear anywhere in
memory

Also the memory required for each node equals the memory required by the member
variables

4 bytes for the linked list (a pointer)
8 bytes for each node (an int and a pointer)

We are assuming a 32-bit machine



Structure (cont.)

Such a list could occupy memory as follows:
The next_node  pointers store the addresses of the next node in the list



Structure (cont.)

Because the addresses are arbitrary, we can remove that information:



Structure (cont.)

We will clean up the representation as follows:

We do not specify the addresses because they are arbitrary and:
The contents of the circle is the value
The next_node  pointer is represented by an arrow



Operations

First, we want to create a linked list

We also want to be able to manage the stored values in the linked list

insert into,
access, and
erase from



Operations (cont.)

We can do them with the following operations:

Adding, retrieving, or removing the value at the front of the linked list

We may also want to access the head of the linked list

Member functions that may change the object acted upon are variously called
mutators, modifiers, and, when it involves changing a single member variable,
setters

void push_front( int ); 

int front() const; 

void pop_front(); 

Node *begin() const;



Operations (cont.)

All these operations relate to the first node of the linked list

We may want to perform operations on an arbitrary node of the linked list, for
example:

Find the number of instances of an integer in the list:

Remove all instances of an integer from the list:

int count( int ) const; 

int erase( int ); 



Capacity

Additionally, we may wish to check the state:

Is the linked list empty?

How many objects are in the list?

The list is empty when the list_head  pointer is set to nullptr

bool empty() const; 

int size() const; 



Consider this simple (but incomplete) linked list class:



Consider this simple (but incomplete) linked list class:

In [8]: class List { 

public: 

    // we defined it outside of the List class scope 

    //class Node {...}; 

    List(); 

    ~List(){}; 

 

    // Accessors 

    bool empty() const; 

    int size() const; 

    int front() const; 

    Node* begin() const; 

    Node* end() const; 

 

    // Mutators 

    void push_front( int ); 

    int pop_front(); 

     

    // Misc 

    int count( int ) const; 

    int erase( int ); 

 

private: 

    Node *list_head; // head pointer of the list 

}; 



Constructor

The constructor initializes the linked list

We do not count how may objects are in this list, thus:
we must rely on the last pointer in the linked list to point to a
special value
in C++, that standard value is nullptr

Thus, in the constructor, we assign list_head  the value nullptr

We will always ensure that when a linked list is empty, the list head is assigned 
nullptr



Constructor

The constructor initializes the linked list

We do not count how may objects are in this list, thus:
we must rely on the last pointer in the linked list to point to a
special value
in C++, that standard value is nullptr

Thus, in the constructor, we assign list_head  the value nullptr

We will always ensure that when a linked list is empty, the list head is assigned 
nullptr

In [9]: List::List(): list_head( nullptr ) { } // empty constructor 



Allocation

The constructor is called whenever an object is created, either:

Statically

The following statement defines ls  to be a linked list and the compiler
deals with memory allocation

Dynamically

The following statement requests sufficient memory from the OS to store an
instance of the class

In both cases, the memory is allocated and then the constructor is called

List ls; 

List *pls = new List(); 



Static Allocation



Static Allocation

In [10]: int f() { 

    List ls;   // ls is declared as a local variable on the stack 

 

    ls.push_front( 3 ); 

    cout << ls.front() << endl; 

 

    // The return value is evaluated 

    // The compiler then calls the destructor for local variables 

    // The memory allocated for 'ls' is deallocated 

 

    return 0; 

} 



Dynamic Allocation



Dynamic Allocation

In [11]: List* f( int n ) { 

    List *pls = new List();  // pls is allocated memory by the OS 

 

    pls->push_front( n ); 

    cout << pls->front() << endl; 

 

    // The address of the linked list is the return value 

    // After this, the 4 bytes for the pointer 'pls' is deallocated 

    // The memory allocated for the linked list is still there 

 

    return pls; 

} 



empty()

Starting with the easier member functions:

Better yet:

bool List::empty() const { 

  if ( list_head == nullptr ) { 

      return true; 

  } else { 

      return false; 

  } 

} 



empty()

Starting with the easier member functions:

Better yet:

bool List::empty() const { 

  if ( list_head == nullptr ) { 

      return true; 

  } else { 

      return false; 

  } 

} 

In [12]: bool List::empty() const { 

    return ( list_head == nullptr ); 

} 



empty()

Starting with the easier member functions:

Better yet:

bool List::empty() const { 

  if ( list_head == nullptr ) { 

      return true; 

  } else { 

      return false; 

  } 

} 

In [12]: bool List::empty() const { 

    return ( list_head == nullptr ); 

} 

In [13]: { 

    List ls; 

    cout << ls.empty() << endl; 

} 

true 



begin()

The member function Node* begin() const  is easy enough to implement:



begin()

The member function Node* begin() const  is easy enough to implement:

In [14]: Node* List::begin() const { 

    return list_head;

} 



begin()

The member function Node* begin() const  is easy enough to implement:

In [14]: Node* List::begin() const { 

    return list_head;

} 

This will always work: if the list is empty, it will return nullptr



begin()

The member function Node* begin() const  is easy enough to implement:

In [14]: Node* List::begin() const { 

    return list_head;

} 

This will always work: if the list is empty, it will return nullptr

In [15]: { 

    List ls; 

    cout << ls.empty() << endl; 

    cout << ls.begin() << endl; 

} 

true 

0 



end()

The member function Node* end() const  equals whatever the last node in the
linked list points to



end()

The member function Node* end() const  equals whatever the last node in the
linked list points to

In [16]: // In this case, nullptr front 

Node* List::end() const { 

    return nullptr; 

} 



front()

To get the first value in the linked list, we must access the node to which the 
list_head  is pointing

Because we have a pointer, we must use the ->  operator to call the member
function:

int List::front() const { 

  return begin()->value(); 

} 



The member function int front() const  requires some additional
consideration, however:

What if the list is empty?
If we tried to access a member function of a pointer set to nullptr , we would
access restricted memory

The operating system would terminate the running program
Instead, we can use an exception handling mechanism where we thrown an
exception



The member function int front() const  requires some additional
consideration, however:

What if the list is empty?
If we tried to access a member function of a pointer set to nullptr , we would
access restricted memory

The operating system would terminate the running program
Instead, we can use an exception handling mechanism where we thrown an
exception

In [17]: int List::front() const { 

    if ( empty() ) { 

        throw underflow_error("List is empty"); 

    } 

    return begin()->value(); 

} 



Software Engening Tip

Why is empty()  better than

Two benefits:
More readable
If the implementation changes we do nothing

int List::front() const { 

    if ( list_head == nullptr ) { 

        throw underflow(); 

    } 

 

    return list_head->node_value; 

} 



Inserting at the Head

Step required for insering a new element at the beginning of the list
Allocate a new node
Insert new element value
Have new node point to old head
Update head to point to new node

Corresponding mutator function is void push_front(int)



push_front

Let us add a value in front of the list

If it is empty, we start with: 



push_front

Let us add a value in front of the list

If it is empty, we start with: 

and, if we try to add 81, we should end up with: 



To visualize what we must do:

We must create a new node which:
stores the value 81, and
is pointing to 0

We must then assign its address to list_head
We can do this as follows:

We could also use the default value...

list_head = new Node( 81, nullptr ); 



Suppose however, we already have a non-empty list 



Suppose however, we already have a non-empty list 

Adding 70, we want: 



To achieve this

We must we must create a new node which:
stores the value 70, and
is pointing to the current list head

We must then assign its address to list_head
We can do this as follows:

list_head = new Node( 70, list_head ); 



In [18]: void List::push_front( int n ) { 

    if ( empty() ) { 

        list_head = new Node( n, nullptr ); 

    } else { 

        list_head = new Node( n, begin() ); 

    } 

} 



We could, however, note that when the list is empty, list_head == nullptr ,
thus we could shorten this to:

void List::push_front( int n ) { 

    list_head = new Node( n, list_head ); 

} 



We could, however, note that when the list is empty, list_head == nullptr ,
thus we could shorten this to:

void List::push_front( int n ) { 

    list_head = new Node( n, list_head ); 

} 

Are we allowed to do this?

void List::push_front( int n ) { 

    list_head = new Node( n, begin() ); 

} 



We could, however, note that when the list is empty, list_head == nullptr ,
thus we could shorten this to:

void List::push_front( int n ) { 

    list_head = new Node( n, list_head ); 

} 

Are we allowed to do this?

void List::push_front( int n ) { 

    list_head = new Node( n, begin() ); 

} 

Yes: the right-hand side of an assignment is evaluated first
The original value of list_head  is accessed first before the function call
is made



Question

Does this work?

void List::push_front( int n ) { 

    Node new_node( n, begin() ); 

    list_head = &new_node; 

} 



Question

Does this work?

void List::push_front( int n ) { 

    Node new_node( n, begin() ); 

    list_head = &new_node; 

} 

Why or why not? What happens to new_node ?



Question

Does this work?

void List::push_front( int n ) { 

    Node new_node( n, begin() ); 

    list_head = &new_node; 

} 

Why or why not? What happens to new_node ?

How does this differ from

void List::push_front( int n ) { 

    Node *new_node = new Node( n, begin() ); 

    list_head = new_node; 

} 



Insertion

We can generalize push_front , in order to insert a node at any position of the list:

void List::insert( Node* p, int n ) { 

    p->next_node = new Node( n, p->next() ); 

} 



Insertion

We can generalize push_front , in order to insert a node at any position of the list:

void List::insert( Node* p, int n ) { 

    p->next_node = new Node( n, p->next() ); 

} 

General insert  method can be used to rewrite push  methods

void List::push_front( int n ) { 

    insert( begin(), n ); 

} 

 

void List::push_back( int n ) { 

    insert( end(), n ) // if we have tail pointer 

} 



Removing at the Head

Erasing the element from the front of the list requires:

1. Update head to point to next node in the list
2. Free memory of the former first node



pop_front

Erasing from the front of a linked list is even easier:

We assign the list head to the next pointer of the first node
Graphically, given: 



pop_front

Erasing from the front of a linked list is even easier:

We assign the list head to the next pointer of the first node
Graphically, given: 

we want 



Easy enough:

int List::pop_front() { 

  int e = front(); 

  list_head = begin()->next(); 

  return e; 

} 



Easy enough:

int List::pop_front() { 

  int e = front(); 

  list_head = begin()->next(); 

  return e; 

} 

Unfortunately, we have some problems:
The list may be empty
We still have the memory allocated for the node containing 70



Does this work?

int List::pop_front() { 

    if ( empty() ) { 

        throw underflow_error("List is empty"); 

    } 

 

    int e = front(); 

    delete begin();               /// ???? 

    list_head = begin()->next();  /// ???? 

    return e; 

} 



int List::pop_front() {

if ( empty() ) { throw underflow_error(); }

int e = front(); 

delete begin();

list_head = begin()->next();

return e; </div> }



int List::pop_front() {

if ( empty() ) { throw underflow_error(); }

int e = front();

delete begin(); 

list_head = begin()->next();

return e; </div> }



int List::pop_front() {

if ( empty() ) { throw underflow_error(); }

int e = front();

delete begin();

list_head = begin()->next(); 

return e;

</div> }



Problem

The problem is, we are accessing a node which we have just deleted

Unfortunately, this will work more than 99% of the time:

The running program (process) may still own the memory
Once in a while it will fail ...

... and it will be almost impossible to debug



Solution

The correct implementation assigns a temporary pointer to point to the node being
deleted:



Solution

The correct implementation assigns a temporary pointer to point to the node being
deleted:

In [19]: int List::pop_front() { 

     if ( empty() ) { 

          throw underflow_error("List is empty"); 

     } 

 

    int e = front(); 

    Node *ptr = list_head; 

    list_head = list_head->next(); 

    delete ptr; 

    return e; 

} 



int List::pop_front() {

if ( empty() ) { throw underflow_error(); }
int e = front(); 

Node *ptr = begin();

list_head = begin()->next();

delete ptr;

return e;

</div> }



int List::pop_front() {

if ( empty() ) { throw underflow_error(); } int e = front();
Node *ptr = begin(); 

list_head = begin()->next();

delete ptr;

return e;

</div> }



int List::pop_front() {

if ( empty() ) { throw underflow_error(); } int e = front(); Node *ptr = begin();
list_head = begin()->next(); 

delete ptr;

return e;

</div> }



int List::pop_front() {

if ( empty() ) { throw underflow_error(); } int e = front(); Node *ptr = begin(); list_head =
begin()->next();

delete ptr; 
return e;

</div> }



Inserting at the Tail

Inserting or removing at the tail of a singly linked list is not efficient!
There is no constant-time way to update the tail to point to the previous node

Unless the list ADT maintains the tail  pointer



push_back

For a given the linked list with tail  pointer 

Allocate a new node & insert new element into it
Have new node point to null
Have old last node point to new node
Update tail  pointer to point to new node



push_back

For a given the linked list with tail  pointer

Allocate a new node & insert new element into it 
Have new node point to null
Have old last node point to new node
Update tail  pointer to point to new node



push_back

For a given the linked list with tail  pointer
Allocate a new node & insert new element into it
Have new node point to null

Have old last node point to new node
Update tail  pointer to point to new node



push_back

For a given the linked list with tail  pointer
Allocate a new node & insert new element into it
Have new node point to null
Have old last node point to new node 

Update tail  pointer to point to new node



push_back

For a given the linked list with tail  pointer
Allocate a new node & insert new element into it
Have new node point to null
Have old last node point to new node
Update tail  pointer to point to new node 



Stepping through a Linked List

The next step is to look at member functions which potentially require us to step
through the entire list:

The second counts the number of instances of an integer, and the last removes the
nodes containing that integer

int size() const; 

int count( int ) const; 

int erase( int ); 



The process of stepping through a linked list can be thought of as being analogous to
a for-loop:
We initialize a temporary pointer with the list head
We continue iterating until the pointer equals end()  (e.g. nullptr )
With each step, we set the pointer to point to the next object



The process of stepping through a linked list can be thought of as being analogous to
a for-loop:
We initialize a temporary pointer with the list head
We continue iterating until the pointer equals end()  (e.g. nullptr )
With each step, we set the pointer to point to the next object

Thus, we have:

for ( Node *ptr = begin(); ptr != end(); ptr = ptr->next() ) { 

   // do something 

   // use ptr->fn() to call member functions 

   // use ptr->var to assign/access member variables 

} 



Initialization

With the initialization and first iteration of the loop, we have:

ptr != nullptr  and thus we evaluate the body of the loop and then set ptr to
the next pointer of the node it is pointing to



Stepping

ptr != nullptr  and thus we evaluate the loop and increment the pointer

In the loop, we can access the value being pointed to by using ptr->value()



Stepping

ptr != nullptr  and thus we evaluate the loop and increment the

Also, in the loop, we can access the next node in the list by using ptr->next()



Stepping

ptr != nullptr  and thus we evaluate the loop and increment the

This last increment causes ptr == nullptr



Reached the End

Here, we check and find ptr != nullptr  is false, and thus we exit the loop

Because the variable ptr  was declared inside the loop, we can no longer access it



count

To implement int count(int) const , we simply check if the argument matches
the value with each step

Each time we find a match, we increment the count
When the loop is finished, we return the count
The size function is simplification of count



count

To implement int count(int) const , we simply check if the argument matches
the value with each step

Each time we find a match, we increment the count
When the loop is finished, we return the count
The size function is simplification of count

In [20]: int List::count( int n ) const { 

    int node_count = 0; 

 

    for ( Node *ptr = begin(); ptr != end(); ptr = ptr->next() ) { 

        if ( ptr->value() == n ) { 

            ++node_count; 

        } 

    } 

 

    return node_count; 

} 



In [21]: #include "../src/BasicLinkedList.h" 

{ 

    BasicLinkedList<int> ls; 

    ls.push_front(7); 

    ls.push_front(6); 

    ls.push_front(5); 

    ls.push_front(7); 

    std::cout << ls << std::endl;     

    std::cout << "List size = "<< ls.size() << std::endl; 

    std::cout << "# of 7s in the list = "<< ls.count(7) << std::endl; 

} 

]->(7)[0x5563577b6410]->(5)[0x556356f097e0]->(6)[0x556356cc4180]->(7)[0x55

635777bcb0]->0 

List size = 4 

# of 7s in the list = 2 



erase

To remove an arbitrary value, i.e., to implement int erase( int ) , we must
update the previous node

For example, given

if we delete 70, we want to end up with



In [22]: #include "../src/BasicLinkedList.h" 

{ 

    BasicLinkedList<int> ls; 

    ls.push_front(6); 

    ls.push_front(7); 

    ls.push_front(3); 

    ls.push_front(7); 

    std::cout << ls << std::endl; 

    ls.erase(3); 

    std::cout << ls << std::endl; 

} 

]->(7)[0x55635722b9c0]->(3)[0x556357925870]->(7)[0x556356575130]->(6)[0x55

635778a250]->0 

]->(7)[0x55635722b9c0]->(7)[0x556356575130]->(6)[0x55635778a250]->0 



Software Engening Tip

The erase  function must modify the member variables of the node prior to the
node being removed

Thus, it must have access to the member variable next_node

We could supply the member function

however, this would be globally accessible

Possible solutions:

Friends
Nested classes

void set_next( Node * ); 



Friends

In C++, you could explicitly break encapsulation by declaring the class List  to be a
friend of the class Node :

Now, any member function of class B  has access to all private member variables of
class A

class A { 

    private: 

        int class_size; 

    // ... declaration ... 

    friend class B; 

}; 



For example, if the Node  class was one class, and the List  class was a friend of
the Node  class, List::erase  could modify nodes:

int List::erase( int n ) { 

    int node_count = 0; 

    // ...  

    for ( Node *ptr = begin(); ptr != end(); ptr = ptr->next() ) { 

        // ... 

        if ( some condition ) { 

            // access private `next_node` of the Node class  

            ptr->next_node = ptr->next()->next();  

            // ... 

            ++node_count; 

        } 

    } 

    return node_count; 

} 



Nested Classes

In C++, you can nest one class inside another, which is what we do:

class Outer { 

    private: 

        class Nested { 

            private: 

                int node_value; 

            public: 

                int get() const; 

                void set( int ); 

        }; 

        Nested stored; 

    public: 

        int get() const; 

        void set( int ); 

}; 



The function definitions are as one would expect:

int Outer::Nested::get() const { 

    return node_value; 

} 

  

void Outer::Nested::set( int n ) { 

    node_value = n; 

} 

int Outer::get() const { 

    return stored.get(); 

} 

  

void Outer::set( int n ) { 

    // Not allowed, as node_value is private   

    // stored.node_value = n;  

    stored.set( n );

} 



Destructor

We dynamically allocated memory each time we added a new int into this list

Suppose we delete a list before we remove everything from it

This would leave the memory allocated with no reference to it 



The destructor has to delete any memory which had been allocated but has not yet
been deallocated

This is straight-forward enough:

while ( !empty() ) { 

  pop_front(); 

} 



The destructor has to delete any memory which had been allocated but has not yet
been deallocated

This is straight-forward enough:

while ( !empty() ) { 

  pop_front(); 

} 

Is this efficient?
It runs in  time, where  is the number of objects in the linked list
Given that delete is approximately 100× slower than most other instructions
(it does call the OS), the extra overhead is negligible...

O(n) n



Making Copies

Is the above sufficient for a linked list class?

Initially, it may appear yes, but we now have to look at how C++ copies objects
during:

Passing by value (making a copy), and
Assignment



Modifying Arguments

Pass by reference could be used to modify a list



Modifying Arguments

Pass by reference could be used to modify a list

In [23]: void reverse( BasicLinkedList<int> &list ) { 

    BasicLinkedList<int> tmp; 

    // pop from the front and push into other list 

    while ( !list.empty() ) { 

        tmp.push_front( list.pop_front() ); 

    } 

    // All the member variables of 'list' and 'tmp' are swapped 

    std::swap( list, tmp ); 

    // The memory for 'tmp' will be cleaned up 

} 



Modifying Arguments

Pass by reference could be used to modify a list

In [23]: void reverse( BasicLinkedList<int> &list ) { 

    BasicLinkedList<int> tmp; 

    // pop from the front and push into other list 

    while ( !list.empty() ) { 

        tmp.push_front( list.pop_front() ); 

    } 

    // All the member variables of 'list' and 'tmp' are swapped 

    std::swap( list, tmp ); 

    // The memory for 'tmp' will be cleaned up 

} 

In [24]: { 

    BasicLinkedList<int> ls; 

    ls.push_front(5); ls.push_front(2); ls.push_front(3); 

    std::cout << ls << std::endl; 

    reverse(ls); 

    std::cout << ls << std::endl; 

} 

]->(3)[0x556356d67ee0]->(2)[0x5563579860a0]->(5)[0x556357783d40]->0 

]->(5)[0x556357783d40]->(2)[0x5563579860a0]->(3)[0x556356d67ee0]->0 



If you wanted to prevent the argument from being modified, you could declare it 
const



If you wanted to prevent the argument from being modified, you could declare it 
const

In [32]: double average( const BasicLinkedList<double> &ls ) { 

    double sum = 0, count = 0; 

    for ( SinglyLinkedNode<double> *ptr = ls.begin(); ptr != ls.end(); ptr = ptr->next() ) {

        sum += ptr->value(); 

        ++count; 

    } 

    return sum/count; 

} 



If you wanted to prevent the argument from being modified, you could declare it 
const

In [32]: double average( const BasicLinkedList<double> &ls ) { 

    double sum = 0, count = 0; 

    for ( SinglyLinkedNode<double> *ptr = ls.begin(); ptr != ls.end(); ptr = ptr->next() ) {

        sum += ptr->value(); 

        ++count; 

    } 

    return sum/count; 

} 

In [25]: { 

    BasicLinkedList<double> ls; 

    ls.push_front(10.0); ls.push_front(25.0); ls.push_front(35.0);     

    std::cout << "Average: " << average(ls) << std::endl; 

} 

Average: 23.3333 



What if you want to pass a copy of a linked list to a function - where the function can
modify the passed argument, but the original is unchanged?

By default, all the member variables are simply copied over into the new
instance of the class
This is the default copy constructor behavior
Because a copy is made, the destructor must also be called on it



Copy Constructor

You can modify how copies are made by defining a copy constructor

The default copy constructor simply copies the member variables
In this case, this is not what we want

The signature for the copy constructor is

For the linked list, we would define the member function

Class_name( const Class_name & ); 

List( const List & ); 



If such a function is defined, every time an instance is passed by value, the copy
constructor is called to make that copy

Additionally, you can use the copy constructor as follows:



If such a function is defined, every time an instance is passed by value, the copy
constructor is called to make that copy

Additionally, you can use the copy constructor as follows:

In [26]: #include "../src/BasicLinkedList.h" 

{ 

    BasicLinkedList<int> ls1; 

    ls1.push_front( 4 ); 

    ls1.push_front( 2 ); 

    std::cout << ls1 << std::endl; 

 

    BasicLinkedList<int> ls2( ls1 );  // make a copy of ls1 

    std::cout << ls2 << std::endl; 

} 

]->(2)[0x565505585030]->(4)[0x5655059c7ff0]->0 

]->(2)[0x565503eda680]->(4)[0x565505f2dbe0]->0 



If such a function is defined, every time an instance is passed by value, the copy
constructor is called to make that copy

Additionally, you can use the copy constructor as follows:

In [26]: #include "../src/BasicLinkedList.h" 

{ 

    BasicLinkedList<int> ls1; 

    ls1.push_front( 4 ); 

    ls1.push_front( 2 ); 

    std::cout << ls1 << std::endl; 

 

    BasicLinkedList<int> ls2( ls1 );  // make a copy of ls1 

    std::cout << ls2 << std::endl; 

} 

]->(2)[0x565505585030]->(4)[0x5655059c7ff0]->0 

]->(2)[0x565503eda680]->(4)[0x565505f2dbe0]->0 

When an object is passed/returned by value, again, the copy constructor is called
to make a copy of the passed/returned value



Thus, we must define a copy constructor:
The copy constructor allows us to initialize the member variables
Naïvely, we step through list  and call push_front( int ) :

List::List( List const &list ):list_head( nullptr ) { 

  for ( Node *ptr = list.begin(); 

        ptr != list.end(); ptr = ptr->next() ) { 

      push_front( ptr->value() ); 

  } 

} 



Thus, we must define a copy constructor:
The copy constructor allows us to initialize the member variables
Naïvely, we step through list  and call push_front( int ) :

List::List( List const &list ):list_head( nullptr ) { 

  for ( Node *ptr = list.begin(); 

        ptr != list.end(); ptr = ptr->next() ) { 

      push_front( ptr->value() ); 

  } 

} 

Does this work?
How could we make this work?
We need a push_back( int )  member function



Unfortunately, to make push_back( int )  more efficient, we need a pointer to
the last node in the linked list
We require a list_tail  member variable
Otherwise, push_back( int )  becomes a  function

This would make the copy constructor 
In Assignment 3, you will define and use the member variable list_tail

Θ(n)

Θ(n
2)



In [ ]: List::List( List const &list ):list_head( nullptr ) { 

    // if list is empty, we are finished 

    if ( list.empty() ) { 

        return; 

    } 

    // copy the first node 

    push_front(list.front()); 

    // modify the next pointer of the node pointed to by copy 

    for ( 

        Node *original = list.begin()->next(), *copy = begin(); 

        original != list.end(); 

        original = original->next(), copy = copy->next() 

    ) {

        copy->next_node = new Node( original->value(), nullptr ); 

    } 

} 



Assignment

Let's have two lists 

Consider an assignment:

What do we want? What should this do?

The default is to copy the member variables from lst1  to lst2

lst2 = lst1; 



Because the only member variable of this class is list_head , the value it is
storing (the address of the first node) is copied over

It is equivalent to writing:

lst2.list_head = lst1.list_head; 



Problem

What's wrong with this picture? 



Problem

What's wrong with this picture? 

Also, suppose we call the member function: lst1.pop_front();



Problem

What's wrong with this picture? 

Also, suppose we call the member function: lst1.pop_front();

This only affects the member variable from the object lst1  



Now, the second list lst2  is pointing to memory which has been deallocated...

What is the behavior if we make this call?

The behavior is undefined, however, soon this will probably lead to an access
violation

lst2.pop_front(); 



Like making copies, we must have a reasonable means of assigning

Starting with 

We need to erase the content of lst2  and copy over the nodes in lst1  



Assignment Operator

First, to overload the , we must overload the function named 
operator=

This is a how you indicate to the compiler that you are overloading the
assignment (=) operator

The signature is:

The right-hand side rhs  is passed by value (a copy is made)
The return value is passed by reference

assignment operator

List& operator= ( List ); 

https://en.cppreference.com/w/cpp/language/operators#Assignment_operator


We will swap all the values of the member variables between the left- and right-hand
sides

rhs  is already a copy, so we swap all member variables of it and *this

List& operator = ( List rhs ) { 

    // 'rhs' is passed by value

    // it is a copy of the right-hand side of the assignment 

    // copy/move constructor is called to construct `rhs` 

 

    // Swap all the entries of the copy with this 

 

    return *this; 

} 



In [ ]: List& List::operator= ( List rhs ) { 

    std::swap( *this, rhs ); 

    // Memory for rhs was allocated on the stack 

    // and the destructor will delete it 

    return *this; 

} 



Copy Assignment

Visually, we are doing the following:



Visually, we are doing the following:
Passed by value, the copy constructor is called to create rhs



Visually, we are doing the following:
Passed by value, the copy constructor is called to create rhs
Swapping the member variables of *this  and rhs



Visually, we are doing the following:
Passed by value, the copy constructor is called to create rhs
Swapping the member variables of *this  and rhs
We return and the destructor is called on rhs



Visually, we are doing the following:
Passed by value, the copy constructor is called to create rhs
Swapping the member variables of *this  and rhs
We return and the destructor is called on rhs
Back in the calling function, the two lists contain the same values



Can we do better?

This idea of copy and swap is highly visible in the literature
If the copy constructor is written correctly, it will be fast
Is it always the most efficient?

Consider the calls to new and delete

Each of these is very expensive
Would it not be better to reuse the nodes if possible? 



Move Assignment

 operators typically "steal" the resources held by the argument,
rather than make copies of them, and leave the argument in some valid but
otherwise indeterminate state.

Move assignment

https://en.cppreference.com/w/cpp/language/move_assignment


Move Assignment

 operators typically "steal" the resources held by the argument,
rather than make copies of them, and leave the argument in some valid but
otherwise indeterminate state.

Move assignment

In [ ]: List& List::operator= ( List &&rhs ) { 

    while ( !empty() ) { 

        pop_front(); 

    } 

 

    list_head = rhs.begin(); 

    rhs.list_head = nullptr; 

 

    return *this; 

} 

https://en.cppreference.com/w/cpp/language/move_assignment


Position ADT

The Position ADT models the notion of place within a data structure where a single
object is stored

Nodes implement Position ADT (element at position) and store:
element
link to the previous node
link to the next node



In [31]: class DoubleNode { 

public: 

    DoubleNode( int e = 0, DoubleNode* p = nullptr, DoubleNode* n = nullptr ); 

 

    int value() const; 

    DoubleNode* next() const; 

    DoubleNode* previous() const; 

 

private: 

    int node_value; 

    DoubleNode *previous_node; 

    DoubleNode *next_node; 

}; 



Doubly Linked List

A doubly linked list provides a natural implementation of the Node List ADT
We have every node maintain a link to its previous node in the list
Also, special trailer and header sentinel nodes can be added 



Consider this simple (but incomplete) doubly linked list class:



Consider this simple (but incomplete) doubly linked list class:

In [32]: class DoublyList { 

public: 

    // we defined it outside of the List class scope 

    //class DoubleNode {...}; 

    DoublyList(); 

    ~DoublyList(); 

 

    // Accessors 

    bool empty() const; 

    int size() const; 

    int front() const; 

    int back() const; 

    Node* begin() const; 

    Node* end() const; 

 

    // Mutators 

    void push_front( int ); 

    void push_back( int ); 

    int pop_front(); 

    int pop_back(); 

     

    // Misc 

    int count( int ) const; 

    int erase( int ); 

 

private: 

    DoubleNode *list_head; 

    DoubleNode *list_tail; 

}; 



Insertion

Because of its double link structure, it is possible to insert a node at any position
within a doubly linked list.



Insertion

Because of its double link structure, it is possible to insert a node at any position
within a doubly linked list.

void DoubleList::insert( DoubleNode &p, const int &x ) {

DoubleNode *q = new DoubleNode{ x, p->prev, p }; 

p->prev = p->prev->next = q; 
</div> }



void DoubleList::insert( DoubleNode &p, const int &x ) {

DoubleNode *q = new DoubleNode{ x, p->prev, p };
p->prev = p->prev->next = q; 

</div> }



Deletion

If p  points to the node being removed, only two pointers change before the node
can be reclaimed:



Deletion

If p  points to the node being removed, only two pointers change before the node
can be reclaimed:

void DoubleList::remove( DoubleNode &p ) {

p->prev->next = p->next; // linking out of p.

p->next->prev = p->prev;

delete p; </div> }



void DoubleList::remove( DoubleNode &p ) {

p->prev->next = p->next;
p->next->prev = p->prev; 

delete p; </div> }



void DoubleList::remove( DoubleNode &p ) {

p->prev->next = p->next; p->next->prev = p->prev;

delete p; 
</div> }



Sentinels

It is convenient to add special nodes at both ends of a doubly linked list:

a header node just before the head of the list, and
a trailer node just after the tail of the list. 

These "dummy" or sentinel nodes do not store any elements.

They provide quick access to the first and last nodes of the list.
the header's next pointer points to the first node of the list, and
the trail pointer of the trailer node points to the last node of the list.



Circular Linked List

A circularly linked list has the same kind of nodes as a singly linked list.
Each node in a circularly linked list has a next pointer and an element value, but no 
head  or tail . 

A special node is marked as the cursor.
The cursor node allows us to have a place to starting point in the list.
The element that is referenced by the cursor, which is called the back, and
The element immediately following it in the circular order, which is called the
front.



In [49]: class CircularList { 

public: 

    CircularList() : cursor{nullptr} {} 

    ~CircularList() { while (!empty()) pop(); } 

 

    // Accessors 

    bool empty() const { return cursor == nullptr; } 

    int front() const { return cursor->next()->value(); } 

    int back() const { return cursor->value(); } 

 

    // Mutators 

    void push( int ); 

    void pop();     

private: 

    Node *cursor; // head pointer of the list 

}; 



In [ ]: void CircularList::push(int e) { 

    Node* tmp = new Node(e, nullptr); 

    if ( empty() ) 

        // link node to itself 

        cursor = tmp->next_node = tmp; 

    else { 

        // point new node to the next from the cursor 

        tmp->next_node = cursor->next(); 

        // point cursor to new node 

        cursor->next_node = tmp; 

    } 

} 



In [ ]: void CircularList::push(int e) { 

    Node* tmp = new Node(e, nullptr); 

    if ( empty() ) 

        // link node to itself 

        cursor = tmp->next_node = tmp; 

    else { 

        // point new node to the next from the cursor 

        tmp->next_node = cursor->next(); 

        // point cursor to new node 

        cursor->next_node = tmp; 

    } 

} 

In [ ]: void CircularList::pop() { 

    Node* old = cursor->next(); 

    if (old == cursor) 

        // remove only element from the list, it points to itself 

        cursor = nullptr; 

    else 

        // remove next element from cursor 

        cursor->next_node = old->next(); 

    delete old; 

} 



Doubly Circular Linked List

In a doubly circular linked list has tail->next  pointing to the head  element and 
head->prev  pointing to the tail  element



Locations and run times

The most obvious data structures for implementing an abstract list are arrays and
linked lists

We will review the run time operations on these structures
We will consider the amount of time required to perform actions such as finding,
inserting new entries before or after, or erasing entries at

the first location (the front)
an arbitrary ( th) location
the last location (the back or nth)

The run times will be ,  or 

k

Θ(1) O(n) Θ(n)



Singly Linked List

With asymptotic analysis of linked lists, we can now make the following statements:

front / 1st node arbitrary / th node back / th node

find

insert before

insert after

replace

erase

next n/a

previous n/a

 These become  if we don't have a tail pointer
 These assume we have already accessed the th entry - an  operation

k n

Θ(1) O(n) Θ(1)1

Θ(1) O(n) Θ(n)

Θ(1) Θ(1)2 Θ(1)1

Θ(1) Θ(1)2 Θ(1)1

Θ(1) O(n) Θ(n)

Θ(1) Θ(1)2

O(n) Θ(n)

1 Θ(n)
2 k O(n)



Doubly Linked List

The asymptotic analysis of doubly linked lists shows:

front / 1st node arbitrary / th node back / th node
find

insert before

insert after

replace

erase

next n/a

previous n/a

 These assume we have already accessed the th entry - an  operation

k n

Θ(1) O(n) Θ(1)

Θ(1) Θ(1)1 Θ(1)

Θ(1) Θ(1)1 Θ(1)

Θ(1) Θ(1)1 Θ(1)

Θ(1) Θ(1)1 Θ(1)

Θ(1) Θ(1)1

Θ(1)1 Θ(1)

1
k O(n)



Other operations on linked lists

Allocation and deallocating the memory requires  time
Concatenating two linked lists can be done in 

This requires a tail pointer

Θ(n)

Θ(1)



Arrays

Consider these operations for arrays, including
Standard or one-ended arrays 

Two-ended arrays 



Run times

 Assume we have a pointer to this node∗



Run times

 Assume we have a pointer to this node∗

In general, we will only use these basic data structures if we can restrict ourselves to
operations that execute in  time, as the only alternative is  or Θ(1) O(n) Θ(n)



Memory usage versus run times

All of list data structures require  memory
Using a two-ended array requires one more member variable, , in order to
significantly speed up certain operations
Using a doubly linked list, however, required  additional memory to speed up
other operations

Θ(n)

Θ(1)

Θ(n)


