
Queues & Deques

Abstract Queue

An Abstract Queue (Queue ADT) is an abstract data type that emphasizes specific
operations:

Uses a explicit linear ordering
Insertions and removals are performed individually
There are no restrictions on objects inserted into (pushed onto) the queue -
that object is designated the back of the queue
The object designated as the front of the queue is the object which was in
the queue the longest
The remove operation (popping from the queue) removes the current front
of the queue

There are two exceptions associated with this abstract data structure

It is an undefined operation to call either pop or front on an empty queue

Also called a first-in-first-out (FIFO) data structure
Graphically, we may view these operations as follows

Alternative terms may be used for the four operations on a queue, including:
queue & dequeue
head & tail

Applications

The most common application is in client-server models

Multiple clients may be requesting services from one or more servers
Some clients may have to wait while the servers are busy
Those clients are placed in a queue and serviced in the order of arrival

Grocery stores, banks, and airport security use queues

Most shared computer services are servers:

Web, file, ftp, ssh, database, mail, printers, etc.

Implementations

We will look at two implementations of queues

Singly linked lists
Circular arrays

Requirements

All queue operations must run in timeΘ(1)

Linked List Implementation

Removal is only possible at the front with run time

front / 1st node back / th node
find

insert

erase

The desired behavior of an Abstract Queue may be reproduced by performing
insertions at the back

Θ(1)

n

Θ(1) Θ(1)

Θ(1) Θ(1)

Θ(1) Θ(n)

LinkedList De�nition

LinkedList De�nition

In [3]: template <typename Type>

class LinkedList {

private:

 SinglyLinkedNode<Type> *list_head;

 SinglyLinkedNode<Type> *list_tail;

public:

 LinkedList();

 ~LinkedList();

 // Accessors

 bool empty() const;

 Type front() const;

 // Mutators

 void push_front(const Type &);

 void push_back(const Type &);

 Type pop_front();

};

Queue-as-List Class

The queue class using a singly linked list has a single private member variable: list

Queue-as-List Class

The queue class using a singly linked list has a single private member variable: list

In [4]: template <typename Type>

class LinkedQueue {

 private:

 LinkedList<Type> list;

 public:

 bool empty() const;

 Type front() const;

 void push(Type const &);

 Type pop();

};

The implementation is similar to that of a Stack-as-List

The implementation is similar to that of a Stack-as-List

In [5]: template <typename Type>

bool LinkedQueue<Type>::empty() const {

 return list.empty();

}

The implementation is similar to that of a Stack-as-List

In [5]: template <typename Type>

bool LinkedQueue<Type>::empty() const {

 return list.empty();

}

In [6]: template <typename Type>

void LinkedQueue<Type>::push(Type const &obj) {

 list.push_back(obj);

}

The implementation is similar to that of a Stack-as-List

In [5]: template <typename Type>

bool LinkedQueue<Type>::empty() const {

 return list.empty();

}

In [6]: template <typename Type>

void LinkedQueue<Type>::push(Type const &obj) {

 list.push_back(obj);

}

In [7]: template <typename Type>

Type LinkedQueue<Type>::front() const {

 if (empty()) {

 throw std::underflow_error("Queue is empty");

 }

 return list.front();

}

The implementation is similar to that of a Stack-as-List

In [5]: template <typename Type>

bool LinkedQueue<Type>::empty() const {

 return list.empty();

}

In [6]: template <typename Type>

void LinkedQueue<Type>::push(Type const &obj) {

 list.push_back(obj);

}

In [7]: template <typename Type>

Type LinkedQueue<Type>::front() const {

 if (empty()) {

 throw std::underflow_error("Queue is empty");

 }

 return list.front();

}

In [8]: template <typename Type>

Type LinkedQueue<Type>::pop() {

 if (empty()) {

 throw std::underflow_error("Queue is empty");

 }

 return list.pop_front();

}

Array Implementation

A one-ended array does not allow all operations to occur in

With asymptotic analysis of array lists, we can now make the following statements:

front / 1st node back / th node
find

insert

erase

Θ(1)

n

Θ(1) Θ(1)

Θ(n) Θ(1)

Θ(n) Θ(1)

Using a two-ended array, are possible by pushing at the back and popping
from the front

With asymptotic analysis of two-ended array lists, we can now make the following
statements:

front / 1st node back / th node
find

insert

erase

Θ(1)

n

Θ(1) Θ(1)

Θ(1) Θ(1)

Θ(1) Θ(1)

Design

We need to store an array:

In C++, this is done by storing the address of the first entry

The number of objects currently in the queue and the front and back indexes

The number of objects currently in the stack

The capacity of the array

Type *array;

int queue_size;

int ifront; // index of the front entry

int iback; // index of the back entry

int array_capacity;

Queue-as-Array Class

The class definition is similar to that of the ArrayStack

Queue-as-Array Class

The class definition is similar to that of the ArrayStack

In [10]: template <typename Type>

class ArrayQueue {

 private:

 int queue_size;

 int ifront;

 int iback;

 int array_capacity;

 Type *array;

 public:

 ArrayQueue(int = 10);

 ~ArrayQueue();

 bool empty() const;

 Type front() const;

 void push(Type const &);

 Type pop();

};

Constructor

Before we initialize the values, we will state that

iback is the index of the most-recently pushed object
ifront is the index of the object at the front of the queue

To push, we will increment iback and place the new item at that location

To make sense of this, we will initialize

After the first push, we will increment iback to 0, place the pushed item at
that location

iback = -1;

ifront = 0;

Again, we must initialize the values
We must allocate memory for the array and initialize the member variables
The call to new Type[array_capacity] makes a request to the
operating system for array_capacity objects

Again, we must initialize the values
We must allocate memory for the array and initialize the member variables
The call to new Type[array_capacity] makes a request to the
operating system for array_capacity objects

In [12]: #include <algorithm>

template <typename Type>

ArrayQueue<Type>::ArrayQueue(int n):

 queue_size(0),

 iback(-1),

 ifront(0),

 array_capacity(std::max(1, n)),

 array(new Type[array_capacity])

{

 // Empty constructor

}

Again, we must initialize the values
We must allocate memory for the array and initialize the member variables
The call to new Type[array_capacity] makes a request to the
operating system for array_capacity objects

In [12]: #include <algorithm>

template <typename Type>

ArrayQueue<Type>::ArrayQueue(int n):

 queue_size(0),

 iback(-1),

 ifront(0),

 array_capacity(std::max(1, n)),

 array(new Type[array_capacity])

{

 // Empty constructor

}

Note: Initialization is performed in the order specified in the class declaration

Destructor

The destructor is unchanged from ArrayStack

Destructor

The destructor is unchanged from ArrayStack

In [13]: template <typename Type>

ArrayQueue<Type>::~ArrayQueue() {

 delete[] array;

}

Member Functions

These two functions are similar in behavior as in ArrayStack class

Member Functions

These two functions are similar in behavior as in ArrayStack class

In [14]: template <typename Type>

bool ArrayQueue<Type>::empty() const {

 return (queue_size == 0);

}

Member Functions

These two functions are similar in behavior as in ArrayStack class

In [14]: template <typename Type>

bool ArrayQueue<Type>::empty() const {

 return (queue_size == 0);

}

In [16]: template <typename Type>

Type ArrayQueue<Type>::front() const {

 if (empty()) {

 throw std::underflow_error("Queue is empty");

 }

 return array[ifront];

}

However, a naïve implementation of push and pop may cause difficulties

However, a naïve implementation of push and pop may cause difficulties

In [18]: template <typename Type>

void ArrayQueue<Type>::push(Type const &obj) {

 if (queue_size == array_capacity) {

 throw std::overflow_error("Queue is full");

 }

 ++iback;

 array[iback] = obj;

 ++queue_size;

}

However, a naïve implementation of push and pop may cause difficulties

In [18]: template <typename Type>

void ArrayQueue<Type>::push(Type const &obj) {

 if (queue_size == array_capacity) {

 throw std::overflow_error("Queue is full");

 }

 ++iback;

 array[iback] = obj;

 ++queue_size;

}

In [19]: template <typename Type>

Type ArrayQueue<Type>::pop() {

 if (empty()) {

 throw std::underflow_error("Queue is empty");

 }

 --queue_size;

 ++ifront;

 return array[ifront - 1];

}

Suppose that

The array capacity is 16
We have performed 16 pushes
We have performed 5 pops

The queue size is now 11

We perform one further push

In this case, the array is not full and yet we cannot place any more objects
in to the array

Instead of viewing the array on the range , consider the indexes being
cyclic

0, … , 15

… , 15, 0, 1, … , 15, 0, 1, … , 15, 0, 1, …

Instead of viewing the array on the range , consider the indexes being
cyclic

0, … , 15

… , 15, 0, 1, … , 15, 0, 1, … , 15, 0, 1, …

This is referred to as a circular array

Now, the next push may be performed in the next available location of the circular
array

or using modular arithmetic

++iback;

if (iback == capacity()) {

 iback = 0;

}

iback = (iback + 1) % capacity()

Now, the next push may be performed in the next available location of the circular
array

or using modular arithmetic

++iback;

if (iback == capacity()) {

 iback = 0;

}

iback = (iback + 1) % capacity()

Exceptions

As with a stack, there are a number of options which can be used if the array is filled

If the array is filled, we have four options

Increase the size of the array
Throw an exception
Ignore the element being pushed
Put the pushing process to "sleep" until something else pops the front of the
queue

Include a member function bool full() const;

Increasing Capacity

Unfortunately, if we choose to increase the capacity, this becomes slightly more
complex
A direct copy does not work

The first solution
Move those beyond the front to the end of the array
The next push would then occur in position 6

An alternate solution is normalization
Map the front back at position 0
The next push would then occur in position 16

Application

One of the applications of the queue is performing a breadth-first traversal of a
directory tree

Consider searching the directory structure

We would rather search the more shallow directories first then plunge deep into
searching one sub-directory and all of its contents

One such search is called a breadth-first search (BFS)

Search all the directories at one level before descending a level

BFS Algorithm

The easiest implementation is

Place the root directory into a queue
While the queue is not empty

Pop the directory at the front of the queue
Push all of its sub-directories into the queue

The order in which the directories come out of the queue will be in breadth-first order

Push the root directory A

Pop A and push its two
sub-directories B and H

Pop B and push C, D, and
G

Pop H and push its one
sub-directory I

Pop C, no sub-directories

Pop D and push E and F

Pop G, no sub-directories

Pop I and push J and K

Pop E, no sub-directories

Pop F, no sub-directories

The resulting order

is in breadth-first order of

A B H C D G I E F J K

Standard Template Library

The Standard Template Library (STL) has a which is a
container adapter that gives the programmer the functionality of a queue

wrapper class queue

https://en.cppreference.com/w/cpp/container/queue

Standard Template Library

The Standard Template Library (STL) has a which is a
container adapter that gives the programmer the functionality of a queue

wrapper class queue

In [1]: #include <iostream>

#include <list>

#include <queue>

{

 std::queue< int, std::list<int> > iqueue;

 iqueue.push(13);

 iqueue.push(42);

 std::cout << "Head: " << iqueue.front() << std::endl;

 iqueue.pop(); // no return value

 std::cout << "Head: " << iqueue.front() << std::endl;

 std::cout << "Size: " << iqueue.size() << std::endl;

}

Head: 13

Head: 42

Size: 1

https://en.cppreference.com/w/cpp/container/queue

Queues

The queue is one of the most common abstract data structures
Understanding how a queue works is trivial
The implementation is only slightly more difficult than that of a stack

Applications include:

Queuing clients in a client-server model
Breadth-first traversals of trees

Deque

Abstract Deque

An Abstract Deque (Deque ADT) is an abstract data structure which emphasizes specific
operations

Uses a explicit linear ordering
Insertions and removals are performed individually
Allows insertions at both the front and back of the deque

Methods

The operations will be called

front
back
push_front
push_back
pop_front
pop_back

There are four errors associated with this abstract data type:

It is an undefined operation to access or pop from an empty deque

Applications

Useful as a general-purpose tool

Can be used as either a queue or a stack
Problem solving

Consider solving a maze by adding or removing a constructed path at the
front
Once the solution is found, iterate from the back for the solution

Implementations

The implementations are clear - use
a doubly linked list
a circular array

Doubly Linked List Implementation

Every function of the deque ADT runs in time.
The space usage is

front / 1st node back / th node
find

insert

erase

Most of the member functions for the LinkedDeque class are straightforward
generalizations of the corresponding functions of the LinkedQueue class

Simply invoke the appropriate operation from the underlying
DoublyLinkedList object

Θ(1)

O(n)

n

Θ(1) Θ(1)

Θ(1) Θ(1)

Θ(1) Θ(1)

Standard Template Library

The Standard Template Library (STL) has a which is a
container adapter that gives the programmer the functionality of a deque

wrapper class deque

https://en.cppreference.com/w/cpp/container/deque

Standard Template Library

The Standard Template Library (STL) has a which is a
container adapter that gives the programmer the functionality of a deque

wrapper class deque

In [3]: #include <iostream>

#include <deque>

{

 std::deque<int> ideque;

 ideque.push_front(12);

 ideque.push_back(42);

 ideque.push_front(11);

 std::cout << "Head: " << ideque.front() << std::endl;

 std::cout << "Tail: " << ideque.back() << std::endl;

 ideque.pop_front(); // no return value

 std::cout << "Head: " << ideque.front() << std::endl;

 std::cout << "Size: " << ideque.size() << std::endl;

}

Head: 11

Tail: 42

Head: 12

Size: 2

https://en.cppreference.com/w/cpp/container/deque

