Queues & Deques

Abstract Queue

e An Abstract Queue (Queue ADT) is an abstract data type that emphasizes specific
operations:

» Uses a explicit linear ordering

= Insertions and removals are performed individually

= There are no restrictions on objects inserted into (pushed onto) the queue -
that object is designated the back of the queue

» The object designated as the front of the queue is the object which was in
the queue the longest

= The remove operation (popping from the queue) removes the current front
of the queue

e There are two exceptions associated with this abstract data structure

= |t is an undefined operation to call either pop or front on an empty queue

e Also called a first-in-first-out (FIFO) data structure
e Graphically, we may view these operations as follows

,IIIIIIII,

Front Back
,Illllllll?—ﬂh/
Front Back

.ﬁ ?IIIIIIII’

Front Back

o Alternative terms may be used for the four operations on a queue, including:
= ueue & dequeue
» head & tall

Applications

e The most common application is in client-server models

= Multiple clients may be requesting services from one or more servers

= Some clients may have to wait while the servers are busy

= Those clients are placed in a queue and serviced in the order of arrival
o Grocery stores, banks, and airport security use queues

e Most shared computer services are servers:

= Web, file, ftp, ssh, database, mail, printers, etc.

Implementations

» We will look at two implementations of queues

= Singly linked lists
= Circular arrays
e Requirements

= All queue operations must run in ©(1) time

Linked List Implementation

 Removal is only possible at the front with @(1) run time

list_head OO+ + OO0 (;/ >0

list tail

front / 1st node back / nth node

find O(1) o(1)
insert O(1) O(1)
erase O(1) O(n)

e The desired behavior of an Abstract Queue may be reproduced by performing
insertions at the back

LinkedL1st Definition

LinkedL1ist Definition

template <typename Type>

class LinkedList {

private:
SinglyLinkedNode<Type> *list head;
SinglyLinkedNode<Type> *1list tail;

public:
LinkedList();
~LinkedList();

// Accessors
bool empty() const;
Type front() const;

// Mutators

void push front(const Type &);
void push back(const Type &);
Type pop front();

Queue-as-List Class

e The queue class using a singly linked list has a single private member variable: list

Queue-as-List Class

e The queue class using a singly linked list has a single private member variable: list

template <typename Type>
class LinkedQueue {
private:
LinkedList<Type> list;
public:
bool empty() const;
Type front() const;
void push(Type const &);
) Type pop();

e The implementation is similar to that of a Stack-as-List

e The implementation is similar to that of a Stack-as-List

template <typename Type>

bool LinkedQueue<Type>::empty() const {
return list.empty();

}

e The implementation is similar to that of a Stack-as-List

template <typename Type>

bool LinkedQueue<Type>::empty() const {
return list.empty();

}

template <typename Type>

void LinkedQueue<Type>::push(Type const &obj) {
list.push back(obj);

¥

e The implementation is similar to that of a Stack-as-List

template <typename Type>

bool LinkedQueue<Type>::empty() const {
return list.empty();

}

template <typename Type>

void LinkedQueue<Type>::push(Type const &obj) {
list.push back(obj);

¥

template <typename Type>
Type LinkedQueue<Type>::front() const {
if (empty()) {
throw std::underflow error("Queue is empty");
}

return list.front();

e The implementation is similar to that of a Stack-as-List

template <typename Type>

bool LinkedQueue<Type>::empty() const {
return list.empty();

}

template <typename Type>

void LinkedQueue<Type>::push(Type const &obj) {
list.push back(obj);

¥

template <typename Type>
Type LinkedQueue<Type>::front() const {
if (empty()) {
throw std::underflow error("Queue is empty");
}

return list.front();

template <typename Type>
Type LinkedQueue<Type>::pop() {
if (empty()) {
throw std::underflow error("Queue is empty");
}

return list.pop front();

Array Implementation

« A one-ended array does not allow all operations to occur in ©(1)

0 | . 2
AlB Cl ce e |Y|Z| | eeo e

o With asymptotic analysis of array lists, we can now make the following statements:

front/ 1st node back / nth node
find O(1) O(1)
insert ©(n) O(1)
erase O(n) O(1)

e Using a two-ended array, @(1) are possible by pushing at the back and popping
from the front

L

N &

. 4
oo e AIBIC seo e Y

« With asymptotic analysis of two-ended array lists, we can now make the following
statements:

front/ 1st node back / nth node
find O(1) O(1)
insert O(1) O(1)
erase O(1) O(1)

Design
e We need to store an array:

» |n C++, this is done by storing the address of the first entry
Type *array;

e The number of objects currently in the queue and the front and back indexes

= The number of objects currently in the stack
int queue size;

int ifront; // index of the front entry
int iback; // index of the back entry

» The capacity of the array

int array capacity;

Queue-as-Array Class

e The class definition is similar to that of the ArrayStack

Queue-as-Array Class
e The class definition is similar to that of the ArrayStack

template <typename Type>
class ArrayQueue {
private:
int queue size;
int ifront;
int iback;
int array capacity;
Type *array;
public:
ArrayQueue(int = 10);
~ArrayQueue()
bool empty() const;
Type front() const;
void push(Type const &);

Type pop();

.
’

b5

Constructor

o Before we initialize the values, we will state that

= iback is the index of the most-recently pushed object
= ifront is the index of the object at the front of the queue
e To push, we will increment iback and place the new item at that location

= To make sense of this, we will initialize

iback = -1;
ifront = 0;

= After the first push, we will increment iback to 0, place the pushed item at
that location

e Again, we must initialize the values
= We must allocate memory for the array and initialize the member variables
= The callto new Type[array capacity] makes arequest to the
operating system for array capacity objects

e Again, we must initialize the values
= We must allocate memory for the array and initialize the member variables
= The callto new Type[array capacity] makes arequest to the
operating system for array capacity objects

#include <algorithm>

template <typename Type>
ArrayQueue<Type>::ArrayQueue(int n):
queue size(0),
iback(-1),
ifront(0),
array capacity(std::max(1, n)),
array(new Typel[array capacity])

// Empty constructor

e Again, we must initialize the values
= We must allocate memory for the array and initialize the member variables
= The callto new Type[array capacity] makes arequest to the
operating system for array capacity objects

#include <algorithm>

template <typename Type>
ArrayQueue<Type>::ArrayQueue(int n):
queue size(0),
iback(-1),
ifront(0),
array capacity(std::max(1, n)),
array(new Typel[array capacity])

// Empty constructor

* Note: Initialization is performed in the order specified in the class declaration

Destructor

e The destructor is unchanged from ArrayStack

Destructor
e The destructor is unchanged from ArrayStack

template <typename Type>

ArrayQueue<Type>::~ArrayQueue() {
delete[] array;

}

Member Functions

e These two functions are similar in behavior as in ArrayStack class

Member Functions

e These two functions are similar in behavior as in ArrayStack class

template <typename Type>

bool ArrayQueue<Type>::empty() const {
return (queue size == 0);

}

Member Functions
e These two functions are similar in behavior as in ArrayStack class

template <typename Type>

bool ArrayQueue<Type>::empty() const {
return (queue size == 0);

}

template <typename Type>
Type ArrayQueue<Type>::front() const {
if (empty()) {
throw std::underflow error("Queue is empty");
}

return array[ifront];

e However, a naive implementation of push and pop may cause difficulties

e However, a naive implementation of push and pop may cause difficulties

template <typename Type>
void ArrayQueue<Type>::push(Type const &obj) {
if (queue size == array capacity) {
throw std::overflow error("Queue is full");
¥
++iback;
array[iback] = obj;
++queue size;

e However, a naive implementation of push and pop may cause difficulties

template <typename Type>
void ArrayQueue<Type>::push(Type const &obj) {
if (queue size == array capacity) {
throw std::overflow error("Queue is full");
}

++iback;
array[iback] = obj;
++queue size;

template <typename Type>
Type ArrayQueue<Type>::pop() {
if (empty()) {
throw std::underflow error("Queue is empty");
}

--queue_size;
++ifront;
return array[ifront - 1];

e Suppose that

» The array capacity is 16
= We have performed 16 pushes
= We have performed 5 pops
o The queue size is now 11

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Front Back

» We perform one further push

» |n this case, the array is not full and yet we cannot place any more objects
in to the array

e Instead of viewing the array on the range 0, . . ., 15, consider the indexes being
cyclic

...,15,0,1,...,15,0,1,...,15,0,1,. ..

e Instead of viewing the array on the range 0, . . ., 15, consider the indexes being
cyclic

...,15,0,1,...,15,0,1,...,15,0,1,. ..

e This is referred to as a circular array

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Front Back

» Now, the next push may be performed in the next available location of the circular
array

++iback;

if (iback == capacity()) {
iback = 0;

}

e or using modular arithmetic

iback = (iback + 1) % capacity()

» Now, the next push may be performed in the next available location of the circular
array

++iback;

if (iback == capacity()) {
iback = 0;

}

e or using modular arithmetic

iback = (iback + 1) % capacity()

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Exceptions
o As with a stack, there are a number of options which can be used if the array is filled
 If the array is filled, we have four options

» Increase the size of the array
= Throw an exception
= Ignore the element being pushed
= Put the pushing process to "sleep” until something else pops the front of the
queue
 Include a member function bool full() const;

Increasing Capacity

o Unfortunately, if we choose to increase the capacity, this becomes slightly more
complex
e A direct copy does not work

0 5 7 8 9 10 11 12 13 14 15

Back Front
0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Back Front

e The first solution
= Move those beyond the front to the end of the array
= The next push would then occur in position 6

o 1 2 3 4 5 6 7 &8 9 10 1 12 13 14 15

Back Front
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 271 22 23 24 25 28 27 28 20 30 31

Back Front

e An alternate solution is normalization
= Map the front back at position O
= The next push would then occur in position 16

o 1 2 3 4 5 6 7 &8 9 10 1 12 13 14 15

Back Front
0 1 2 3 4 5 & 7 8 9 40 11 12 13 14 15 16 17 18 19 20 271 22 23 24 25 28 27 28 29 30 31

HEEEEEEEEEEEEEE

Front Back

Application

e One of the applications of the queue is performing a breadth-first traversal of a
directory tree
» Consider searching the directory structure

e We would rather search the more shallow directories first then plunge deep into
searching one sub-directory and all of its contents

e One such search is called a breadth-first search (BFS)

= Search all the directories at one level before descending a level

BFS Algorithm

e The easiest implementation is

= Place the root directory into a queue
= While the queue is not empty
o Pop the directory at the front of the queue
o Push all of its sub-directories into the queue
e The order in which the directories come out of the queue will be in breadth-first order

Push the root directory A

© @ © (1)
® ® W ®

Pop A and push its two
sub-directories B and H

© @ © (1) A
® ¢ W ®

HIC|ID|G
® ® \
Pop B and push C, D, and
G

© @ © (1) A B
® © W ®

C|D|G]| |
Pop H and push its one
sub-directory |

D|G| |
Pop C, no sub-directories \‘

© @ © (1) ABHC
® © W ®

Pop D and push E and F

© @ © (1) ABHCD

| |E|F
(B) ()
Pop G, no sub-directories
© @O © (1) ABHCDG
& & Q)
(A)
EIF|J|K
(B) (H)
Pop I and push J and K
© D) © (1) ABHCDG |

FIJIK

(B))

Pop E, no sub-directories
© (@ @ (1) ABHCDGIE
e & W ®
(A)

J|K

(B) ()

Pop F, no sub-directories

© (@O @© (1) ABHCDGIEF

e The resulting order
ABHCDGIETFIJK

is in breadth-first order of

Standard Template Library

e The Standard Template Library (STL) has a wrapper class queue whichis a
container adapter that gives the programmer the functionality of a queue

https://en.cppreference.com/w/cpp/container/queue

Standard Template Library

o The Standard Template Library (STL) has a wrapper class queue whichis a

container adapter that gives the programmer the functionality of a queue

#include
#include
#include

{

std:

<iostream>
<list>
<queue>

:queue< int, std::list<int> > iqueue;

iqueue.push(13);
iqueue.push(42);

std::cout << "Head: " << iqueue.front() << std::endl;
iqueue.pop(); // no return value
std::cout << "Head: " << iqueue.front() << std::endl;
std::cout << "Size: " << iqueue.size() << std::endl;
}
Head: 13
Head: 42

Size:

1

https://en.cppreference.com/w/cpp/container/queue

Queues

The queue is one of the most common abstract data structures

Understanding how a queue works is trivial

The implementation is only slightly more difficult than that of a stack

Applications include:

= Queuing clients in a client-server model
» Breadth-first traversals of trees

Deque

Abstract Deque

An Abstract Deque (Deque ADT) is an abstract data structure which emphasizes specific
operations

» Uses a explicit linear ordering
 Insertions and removals are performed individually
» Allows insertions at both the front and back of the deque

'/\rlllllllllll<<.

“1 Push Push [

Front Back

Methods

e The operations will be called

= front
= back
push_front

push_back

pop_front
= pop_back
e There are four errors associated with this abstract data type:

= |tis an undefined operation to access or pop from an empty deque

Applications
» Useful as a general-purpose tool

= Can be used as either a queue or a stack
e Problem solving

» Consider solving a maze by adding or removing a constructed path at the
front
= Once the solution is found, iterate from the back for the solution

Implementations

e The implementations are clear - use
= a doubly linked list
= a circular array

Doubly Linked List Implementation

« Every function of the deque ADT runs in ©(1) time.
= The space usage is O(n)

list head
0+ (YSOS0S -+ o 5OS0 0o

list tail

front /| 1st node back / nth node

find 0(1) 0(1)
insert o(1) o(1)
erase O(1) 0(1)

e Most of the member functions for the LinkedDeque class are straightforward
generalizations of the corresponding functions of the LinkedQueue class
= Simply invoke the appropriate operation from the underlying
DoublyLinkedList object

Standard Template Library

e The Standard Template Library (STL) has a wrapper class deque which is a
container adapter that gives the programmer the functionality of a deque

https://en.cppreference.com/w/cpp/container/deque

Standard Template Library

e The Standard Template Library (STL) has a wrapper class deque which is a
container adapter that gives the programmer the functionality of a deque

#include <iostream>
#include <deque>

{

std: :deque<int> ideque;

ideque.push front(12);
ideque.push back(42);
ideque.push front(11);

std::cout <<
std::cout <<
ideque.pop front();
std::cout <<
std::cout <<

Head:
Tail:
Head:
Size:

11
42
12

" << ideque.front() << std::endl;
" << ideque.back() << std::endl;
// no return value

" << ideque.front() << std::endl;
" << ideque.size() << std::endl;

https://en.cppreference.com/w/cpp/container/deque

