
Stacks



Abstract Stack

An Abstract Stack (Stack ADT) is an abstract data type which emphasizes specific
operations:

Uses a explicit linear ordering
Insertions and removals are performed individually
Inserted objects are pushed onto the stack
The top of the stack is the most recently object pushed onto the stack
When an object is popped from the stack, the current top is erased



Also called a last-in-first-out (LIFO) behavior
Graphically, we may view these operations as follows: 

There are two exceptions associated with abstract stacks:

It is an undefined operation to call either pop or top on an empty stack



Applications

Numerous applications:

Parsing code
Matching parenthesis
XML (e.g., XHTML)

Tracking function calls
Dealing with undo/redo operations
Reverse-Polish calculators
Assembly language

The stack is a very simple data structure

Given any problem, if it is possible to use a stack, this significantly simplifies
the solution



Stack: Applications

Problem solving

Solving one problem may lead to subsequent problems
These problems may result in further problems
As problems are solved, your focus shifts back to the problem which lead to
the solved problem

Notice that function calls behave similarly

A function is a collection of code which solves a problem
Reference: Donald Knuth



Implementations

We will look at two implementations of stacks

The optimal asymptotic run time of any algorithm is 

The run time of the algorithm is independent of the number of objects being
stored in the container
We will always attempt to achieve this lower bound

We will look at

Singly linked lists
One-ended arrays

Θ(1)



Linked-List Implementation

Operations at the front of a singly linked list are all 

With asymptotic analysis of linked lists, we can now make the following statements:

front / 1st node back / th node
find

insert

erase

The desired behavior of an Abstract Stack may be reproduced by performing all
operations at the front

Θ(1)

n

Θ(1) Θ(1)

Θ(1) Θ(1)

Θ(1) Θ(n)



LinkedList  De�nition



LinkedList  De�nition

In [2]: template <typename Type> 

class LinkedList { 

private: 

    SinglyLinkedNode<Type> *list_head; 

 

public: 

    LinkedList(); 

    ~LinkedList(); 

 

    // Accessors 

    bool empty() const; 

    Type front() const; 

    SinglyLinkedNode<Type>* begin() const; 

 

    int size() const; 

    int count( const Type & ) const; 

    SinglyLinkedNode<Type>* find( const Type & ) const; 

 

    // Mutators 

    void push_front( const Type & ); 

    Type pop_front(); 

}; 



Stack-as-List Class

The stack class using a singly linked list has a single private member variable:



Stack-as-List Class

The stack class using a singly linked list has a single private member variable:

In [3]: template <typename Type> 

class Stack { 

    private: 

        LinkedList<Type> list; 

    public: 

        bool empty() const; 

        Type top() const; 

        void push( Type const & ); 

        Type pop(); 

}; 



Stack-as-List Class

The stack class using a singly linked list has a single private member variable:

In [3]: template <typename Type> 

class Stack { 

    private: 

        LinkedList<Type> list; 

    public: 

        bool empty() const; 

        Type top() const; 

        void push( Type const & ); 

        Type pop(); 

}; 

A constructor and destructor is not needed
Because list is declared, the compiler will call the constructor of the 
LinkedList  class when the Stack  is constructed



The empty  and push  functions just call the appropriate functions of the 
LinkedList  class



The empty  and push  functions just call the appropriate functions of the 
LinkedList  class

In [4]: template <typename Type> 

bool Stack<Type>::empty() const { 

    return list.empty(); 

} 



The empty  and push  functions just call the appropriate functions of the 
LinkedList  class

In [4]: template <typename Type> 

bool Stack<Type>::empty() const { 

    return list.empty(); 

} 

In [5]: template <typename Type> 

void Stack<Type>::push( Type const &obj ) { 

    list.push_front( obj ); 

} 



The empty  and push  functions just call the appropriate functions of the 
LinkedList  class

In [4]: template <typename Type> 

bool Stack<Type>::empty() const { 

    return list.empty(); 

} 

In [5]: template <typename Type> 

void Stack<Type>::push( Type const &obj ) { 

    list.push_front( obj ); 

} 

The top  and pop  functions, however, must check the boundary case:



The empty  and push  functions just call the appropriate functions of the 
LinkedList  class

In [4]: template <typename Type> 

bool Stack<Type>::empty() const { 

    return list.empty(); 

} 

In [5]: template <typename Type> 

void Stack<Type>::push( Type const &obj ) { 

    list.push_front( obj ); 

} 

The top  and pop  functions, however, must check the boundary case:

In [6]: template <typename Type> 

Type Stack<Type>::top() const { 

    if ( empty() ) { 

        throw std::underflow_error("Stack is empty"); 

    } 

    return list.front(); 

} 



The empty  and push  functions just call the appropriate functions of the 
LinkedList  class

In [4]: template <typename Type> 

bool Stack<Type>::empty() const { 

    return list.empty(); 

} 

In [5]: template <typename Type> 

void Stack<Type>::push( Type const &obj ) { 

    list.push_front( obj ); 

} 

The top  and pop  functions, however, must check the boundary case:

In [6]: template <typename Type> 

Type Stack<Type>::top() const { 

    if ( empty() ) { 

        throw std::underflow_error("Stack is empty"); 

    } 

    return list.front(); 

} 

In [7]: template <typename Type> 

Type Stack<Type>::pop() { 

    if ( empty() ) { 

        throw std::underflow_error("Stack is empty"); 

    } 

    return list.pop_front(); 

} 



Array Implementation

For one-ended arrays, all operations at the back are 

With asymptotic analysis of array lists, we can now make the following statements:

front / 1st node back / th node
find

insert

erase

The desired behavior of an Abstract Stack may be reproduced by performing all
operations at the back

Θ(1)

n

Θ(1) Θ(1)

Θ(n) Θ(1)

Θ(n) Θ(1)



Design

We need to store an array:

In C++, this is done by storing the address of the first entry

We need additional information, including:

The number of objects currently in the stack

The capacity of the array

Type *array; 

int stack_size; 

int array_capacity; 



Stack-as-Array Class



Stack-as-Array Class

In [8]: template <typename Type> 

class ArrayStack { 

    private: 

        int stack_size; 

        int array_capacity; 

        Type *array; 

    public: 

        ArrayStack( int = 10 ); 

        ~ArrayStack(); 

        bool empty() const; 

        Type top() const; 

        void push( Type const & ); 

        Type pop(); 

}; 



Constructor

The class is only storing the address of the array
We must allocate memory for the array and initialize the member variables
The call to new Type[array_capacity]  makes a request to the
operating system for array_capacity  objects



Constructor

The class is only storing the address of the array
We must allocate memory for the array and initialize the member variables
The call to new Type[array_capacity]  makes a request to the
operating system for array_capacity  objects

In [9]: template <typename Type> 

ArrayStack<Type>::ArrayStack( int n ): 

    stack_size( 0 ), 

    array_capacity( std::max( 1, n ) ), 

    array( new Type[array_capacity] )  

{ 

    // Empty constructor 

} 



Destructor

The call to new  in the constructor requested memory from the operating system
The destructor must return that memory to the operating system



Destructor

The call to new  in the constructor requested memory from the operating system
The destructor must return that memory to the operating system

In [10]: template <typename Type> 

ArrayStack<Type>::~ArrayStack() { 

    delete[] array; 

} 



empty

The stack is empty if the stack size is zero



empty

The stack is empty if the stack size is zero

In [11]: template <typename Type> 

bool ArrayStack<Type>::empty() const { 

    return ( stack_size == 0 ); 

} 



top

If there are n  objects in the stack, the last is located at index n-1



top

If there are n  objects in the stack, the last is located at index n-1

In [12]: template <typename Type> 

Type ArrayStack<Type>::top() const { 

    if ( empty() ) { 

        throw std::underflow_error("Stack is empty"); 

    } 

    return array[stack_size - 1]; 

} 



pop

Removing an object simply involves reducing the size
It is invalid to assign the last entry to 0
By decreasing the size, the previous top of the stack is now at the location 
stack_size



pop

Removing an object simply involves reducing the size
It is invalid to assign the last entry to 0
By decreasing the size, the previous top of the stack is now at the location 
stack_size

In [13]: template <typename Type> 

Type ArrayStack<Type>::pop() { 

    if ( empty() ) { 

        throw std::underflow_error("Stack is empty"); 

    } 

    --stack_size; 

    return array[stack_size]; 

} 



push

Pushing an object onto the stack can only be performed if the array is not full



push

Pushing an object onto the stack can only be performed if the array is not full

In [14]: template <typename Type> 

void ArrayStack<Type>::push( Type const &obj ) { 

    if ( stack_size == array_capacity ) { 

        throw overflow_error("Stack is empty");  // Best solution????? 

    } 

    array[stack_size] = obj; 

    ++stack_size; 

} 



Exceptions

The case where the array is full is not an exception defined in the Abstract Stack

If the array is filled, we have five options:

Increase the size of the array
Throw an exception
Ignore the element being pushed
Replace the current top of the stack
Put the pushing process to "sleep" until something else removes the top of
the stack

Include a member function bool full() const;



Array Capacity

If dynamic memory is available, the best option is to increase the array capacity

If we increase the array capacity, the question is:

How much?
By a constant?

array_capacity += c;

By a multiple?
array_capacity *= c;



1. First, this requires a call to new Type[N]  where N  is the new capacity
We must have access to this so we must store the address returned by new
in a local variable, say tmp

2. Next, the values must be copied over
3. The memory for the original array must be deallocated
4. Finally, the appropriate member variables must be reassigned



1. First, this requires a call to new Type[N]  where N  is the new capacity
We must have access to this so we must store the address returned by new
in a local variable, say tmp

2. Next, the values must be copied over
3. The memory for the original array must be deallocated
4. Finally, the appropriate member variables must be reassigned

In [ ]: void double_capacity() { 

    Type *tmp_array = new Type[2*array_capacity]; //| Step 1 

                                                  //|-------- 

    for ( int i = 0; i < array_capacity; ++i ) {  //|  

        tmp_array[i] = array[i];                  //| Step 2 

    }                                             //|-------- 

                                                  //| 

    delete [] array;                              //| Step 3 

                                                  //|--------     

    array = tmp_array;                            //|  

    array_capacity *= 2;                          //| Step 4 

} 



Back to the original question:

How much do we change the capacity?
Add a constant?
Multiply by a constant?

First, we recognize that any time that we push onto a full stack, this requires n copies
and the run time is 

Therefore, push is usually  except when new memory is required

Θ(n)

Θ(1)



To state the average run time, we will introduce the concept of amortized time
If  operations requires , we will say that an individual operation
has an amortized run time of 
Therefore, if inserting n objects requires:

 copies, the amortized time is 
 copies, the amortized time is 

n Θ(f(n))

Θ(f(n)/n)

Θ(n2) Θ(n)

Θ(n) Θ(1)



Let us consider the case of increasing the capacity by 1 each time the array is full
With each insertion when the array is full, this requires all entries to be
copied



Let us consider the case of increasing the capacity by 1 each time the array is full
With each insertion when the array is full, this requires all entries to be
copied



Suppose we insert  objects
The pushing of the th object on the stack requires  copies
The total number of copies is now given by

Therefore, the amortized number of copies is given by

Therefore each push must run in  time

The wasted space, however is 

n

k k − 1

n

∑
k=1

(k − 1) = (
n

∑
k=1

k) − n = − n = = Θ(n2)
n(n + 1)

2

n(n − 1)

2

Θ( ) = Θ(n)
n2

n

Θ(n)

Θ(1)



Suppose we double the number of entries each time the array is full
Now the number of copies appears to be significantly fewer





Suppose we double the number of entries each time the array is full
Now the number of copies appears to be significantly fewer





Suppose we double the array size each time it is full

This is difficult to solve for an arbitrary n so instead, we will restrict the number of
objects we are inserting to  objects
We will then assume that the behavior for intermediate values of  will be similar

Inserting  objects would therefore require

copies, for once we add the last object, the array will be full

The total number of copies is therefore

Therefore the amortized number of copies per insertion is 
The wasted space, however is 

n = 2h

n

n = 2h

1, 2, 4, 8, … , 2h−1

n

∑
k=1

2k = 2(h−1)+1 − 1 = 2h − 1 = n − 1 = Θ(n)

Θ(1)

O(n)



What if we increase the array size by a larger constant?
For example, increase the array size by 4, 8, 100?





What if we increase the array size by a larger constant?
For example, increase the array size by 4, 8, 100?





Suppose we increase it by a constant value m and we add n = ℓm objects

To add  items, we will have to make

copies in total, or

The amortized number of copies is

as  is fixed

n

m, 2m, 3m, … , (l − 1)m

l−1

∑
k=1

km = m
l−1

∑
k=1

k = m = Θ(ml2) = Θ((ml)l) = Θ(n )
l(l − 1)

2

n

m

Θ( ) = Θ(n)
n

m

m



Note the difference in worst-case amortized scenarios

Copies per Insertion Unused Memory
Increase by 

Increase by 

Increase by a factor of 

Increase by a factor of 

1 n − 1 0

m n/m 0

2 1 n

r 1/(r − 1) (r − 1)n



Reverse-Polish Notation

Normally, mathematics is written using what we call in-fix notation:

The operator is placed between to operands

One weakness: parentheses are required

(3 + 4) × 5 − 6

(3 + 4) × 5 − 6 = 29

3 + 4 × 5 − 6 = 17

3 + 4 × (5 − 6) = −1

(3 + 4) × (5 − 6) = −7



Alternatively, we can place the operands first, followed by the operator:

Parsing reads left-to-right and performs any operation on the last two operands:

(3 + 4) × 5 − 6

3 4 + 5 × 6−

3 4 + 5 × 6−

7 5 × 6−

35 6−

29



Benefits
No ambiguity and no brackets are required
It is the same process used by a computer to perform computations

operands must be loaded into registers before operations can be
performed on them

Reverse-Polish can be processed using stacks



Reverse-Polish notation is used with some programming languages

e.g., postscript, pdf, and HP calculators
Similar to the thought process required for writing assembly language code

you cannot perform an operation until you have all of the operands loaded
into registers

MOVE.L #$2A, D1      ; Load  42 into Register D1 

MOVE.L #$100, D2     ; Load 256 into Register D2 

ADD D2, D1           ; Add D2 into D1 



The easiest way to parse Reverse-Polish notation is to use an operand stack

operands are processed by pushing them onto the stack
when processing an operator

pop the last two items off the operand stack,
perform the operation, and
push the result back onto the stack



Example



Example

Evaluate the following reverse-Polish expression using a stack:

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Example

Evaluate the following reverse-Polish expression using a stack:

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack



Push  onto the stack1

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Push  onto the stack1

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

1



Push  onto the stack2

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Push  onto the stack2

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

1
2



Push  onto the stack3

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Push  onto the stack3

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

2
1

3



Pop  and  and push 3 2 2 + 3 = 5

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Pop  and  and push 3 2 2 + 3 = 5

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

1
5



Push  onto the stack4

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Push  onto the stack4

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

5
1

4



Push  onto the stack5

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Push  onto the stack5

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

4
5
1

5



Push  onto the stack6

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Push  onto the stack6

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

5
4
5
1

6



Pop  and  and push 5 6 5 × 6 = 30

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Pop  and  and push 5 6 5 × 6 = 30

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

4
5
1

30



Pop  and  and push 30 4 4 − 30 = −26

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Pop  and  and push 30 4 4 − 30 = −26

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

5
1

−26



Push  onto the stack7

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Push  onto the stack7

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

-26
5
1

7



Pop  and  and push 7 −26 −26 × 7 = −182

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Pop  and  and push 7 −26 −26 × 7 = −182

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

5
1

-182



Pop  and  and push −182 5 −182 + 5 = −177

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Pop  and  and push −182 5 −182 + 5 = −177

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

1
-177



Pop  and  and push −177 1 1 − (−177) = 178

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Pop  and  and push −177 1 1 − (−177) = 178

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

178



Push  onto the stack8

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Push  onto the stack8

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

178
8



Push  onto the stack9

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Push  onto the stack9

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

8
178

9



Pop  and  and push 9 8 8 × 9 = 72

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Pop  and  and push 9 8 8 × 9 = 72

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

178
72



Pop  and  and push 72 178 178 + 72 = 250

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Pop  and  and push 72 178 178 + 72 = 250

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

Stack

250



Thus

evaluates to the value on the top: 

The equivalent in-fix notation is

We reduce the parentheses using order-of-operations:

1 2 3 + 4 5 6 × −7 × + − 8 9 × +

250

((1 − ((2 + 3) + ((4 − (5 × 6)) × 7))) + (8 × 9))

1 − (2 + 3 + (4 − 5 × 6) × 7) + 8 × 9



Incidentally,

which has the reverse-Polish notation of
The equivalent in-fix notation is

For comparison, the calculated expression was

1 − 2 + 3 + 4 − 5 × 6 × 7 + 8 × 9 = −132

1 2 × 3 + 4 + 5 6 7 × × − 8 9 × +

1 2 3 + 4 5 6 × −7 × + − 8 9 × +



Standard Template Library

The Standard Template Library (STL) has a  with the following
declaration

wrapper class stack

https://en.cppreference.com/w/cpp/container/stack


Standard Template Library

The Standard Template Library (STL) has a  with the following
declaration

wrapper class stack

In [ ]: template <typename T>

class stack { 

public: 

    stack(); 

    bool empty() const; 

    int size() const; 

    const T& top() const; 

    void push( const T& ); 

    void pop(); 

}; 

https://en.cppreference.com/w/cpp/container/stack


In [16]: #include <stack> 

{ 

    stack<int> istack; 

 

    istack.push( 13 ); 

    istack.push( 42 ); 

    cout << "Top: " << istack.top() << endl; 

    istack.pop();                             // no return value 

    cout << "Top: " << istack.top() << endl; 

    cout << "Size: " << istack.size() << endl; 

} 

Top: 42 

Top: 13 

Size: 1 



In [16]: #include <stack> 

{ 

    stack<int> istack; 

 

    istack.push( 13 ); 

    istack.push( 42 ); 

    cout << "Top: " << istack.top() << endl; 

    istack.pop();                             // no return value 

    cout << "Top: " << istack.top() << endl; 

    cout << "Size: " << istack.size() << endl; 

} 

Top: 42 

Top: 13 

Size: 1 

The reason that the stack  class is termed a wrapper is because it uses a different
container class to actually store the elements

The stack  class simply presents the stack  interface with appropriately named
member functions

push , pop , and top



Stacks

The stack is the simplest of all ADTs

Understanding how a stack works is trivial
The application of a stack, however, is not in the implementation, but rather:

Where possible, create a design which allows the use of a stack


