
THE PRINCIPLES OF

FUNCTIONAL PROGRAMMING

Core principles of FP

Function

Types are not classes

Functions are things

Composition everywhere

Core FP principle:

Functions are things

Function

Functions as things

The Tunnel of
Transformation
Function

apple -> banana

A function is a thing which
transforms inputs to outputs

A function is a standalone thing,

not attached to a class

It can be used for inputs and outputs

of other functions

input

A function can be an output

A function is a standalone thing

output

A function can be an input

A function is a standalone thing

input output

A function can be a parameter

A function is a standalone thing

Core FP principle:

Composition everywhere

What is Composition?

Lego Philosophy

1. All pieces are designed to be connected

2. Connect two pieces together and get

another "piece" that can still be connected

3. The pieces are reusable in many contexts

All pieces are designed to be connected

Connect two pieces together and
get another "piece" that can still be connected

The pieces are reusable in different contexts

Make big things from small things in the same way

Function Composition

Function composition

Function 1

apple -> banana

Function 2

banana -> cherry

Function composition

>>
Function 1

apple -> banana
Function 2

banana -> cherry

Function composition

New Function

apple -> cherry

Can't tell it was built
from smaller functions!

Where did the banana go?
(abstraction)

Function composition

New Function

apple -> cherry

A Very Important Point: For composition to work properly:
• Data must be immutable
• Functions must be self-contained, with no strings attached:
 no side-effects, no I/O, no globals, etc

Building big things from functions
It's compositions all the way up

Low-level operation

ToUpper
string string

Low-level operation

Service

AddressValidator

A “Service” is just like a microservice
but without the "micro" in front

Validation

Result

Address

Low-level operation Low-level operation

Service

Use-case

UpdateProfileData
ChangeProfile

Result

ChangeProfile

Request

Service Service

Use-case

Web application

Http

Response

Http

Request

Use-case Use-case

Http

Response
Http

Request

Core FP principle:

Types are not classes

So, what is a type then?
A type is a just a name

for a set of things

Set of

valid inputs

Set of

valid outputs

Function

Set of

valid inputs

Set of

valid outputs

Function

1

2

3

4

5

6

This is type
"integer"

A type is a just a name

for a set of things

Set of

valid inputs

Set of

valid outputs

Function

This is type
"string"

"abc"

"but"

"cobol"

"double"

"end"

"float"

A type is a just a name

for a set of things

Set of

valid inputs

Set of

valid outputs

Function

This is type
"Person"

Donna Roy

Javier Mendoza

Nathan Logan

Shawna Ingram

Abel Ortiz

Lena Robbins

Gordon Wood

A type is a just a name

for a set of things

Set of

valid inputs

Set of

valid outputs

Function

This is type
"Fruit"

A type is a just a name

for a set of things

Set of

valid inputs

Set of

valid outputs

Function

This is a type of
Fruit->Fruit functions

A type is a just a name

for a set of things

10%

35%
30%

30%

2%

20%
30%

10% 28%

5%

0%

20%

40%

60%

80%

100%

C# F#

Bug fixing

Unit tests

Getting the code to

compile

Writing code

Thinking

>>

X
Composition is type checked!

10%

35%
30%

30%
2%

20%

30%

10% 28%
5%

0%

20%

40%

60%

80%

100%

C# F#

Bug fixing

Unit tests

Getting the code to

compile

Writing code

Thinking

But the good news is...

A lot less bug fixing!

Composition everywhere:

Types can be composed too

Algebraic type system

New types are built from smaller types by:

 Composing with “AND”

 Composing with “OR”

Example: pairs, tuples, records
FruitSalad = One each of and and

Compose with “AND”

type FruitSalad = {
 Apple: AppleVariety
 Banana: BananaVariety
 Cherry: CherryVariety
 }

Snack = or or

Compose with “OR”

type Snack =
 | Apple of AppleVariety
 | Banana of BananaVariety
 | Cherry of CherryVariety

Real world example

of type composition

Example of some requirements:

We accept three forms of payment:

Cash, Check, or Card.

For Cash we don't need any extra information

For Checks we need a check number

For Cards we need a card type and card number

interface IPaymentMethod
{..}

class Cash() : IPaymentMethod
{..}

class Check(int checkNo): IPaymentMethod
{..}

class Card(string cardType, string cardNo) : IPaymentMethod
{..}

In OO design you would probably implement it as an
interface and a set of subclasses, like this:

type CheckNumber = int

type CardNumber = string

In F# you would probably implement by composing
types, like this:

type CheckNumber = ...

type CardNumber = …

type CardType = Visa | Mastercard

type CreditCardInfo = {

 CardType : CardType

 CardNumber : CardNumber

 }

type CheckNumber = ...

type CardNumber = ...

type CardType = ...

type CreditCardInfo = ...

type PaymentMethod =

 | Cash

 | Check of CheckNumber

 | Card of CreditCardInfo

type CheckNumber = ...

type CardNumber = ...

type CardType = ...

type CreditCardInfo = ...

type PaymentMethod =

 | Cash

 | Check of CheckNumber

 | Card of CreditCardInfo

type PaymentAmount = decimal

type Currency = EUR | USD

type CheckNumber = ...

type CardNumber = ...

type CardType = ...

type CreditCardInfo = ...

type PaymentMethod =

 | Cash

 | Check of CheckNumber

 | Card of CreditCardInfo

type PaymentAmount = decimal

type Currency = EUR | USD

type Payment = {

 Amount : PaymentAmount

 Currency: Currency

 Method: PaymentMethod }

FP design principle:

Types are executable documentation

type Deal = Deck –› (Deck * Card)

type PickupCard = (Hand * Card) –› Hand

Types are executable documentation

type Suit = Club | Diamond | Spade | Heart

type Rank = Two | Three | Four | Five | Six | Seven | Eight

 | Nine | Ten | Jack | Queen | King | Ace

type Card = Suit * Rank

type Hand = Card list

type Deck = Card list

type Player = {Name:string; Hand:Hand}

type Game = {Deck:Deck; Players: Player list}

The domain on one screen!

Types are executable documentation

type CardType = Visa | Mastercard

type CardNumber = CardNumber of string

type CheckNumber = CheckNumber of int

type PaymentMethod =

 | Cash

 | Check of CheckNumber

 | Card of CardType * CardNumber

The End

This is everything you need to know

about functional programming

