THE PRINCIPLES OF
FUNCTIONAL PROGRAMMING

Core principles of FP

Functions are things

Composition everywhere

Types are not classes

if| Function

Core FP principle:
Functions are things

Function

Function

m o m \

A function is a thing which
transforms iv\pu’cs to ou’cpu’cs

A function is a standalone thing,
not attached to a class

It can be used for inputs and outputs
of other functions

A function is a standalone thing

ﬂ E - i

A fwnction can be an owtput

A function is a standalone thing

ol MW ﬂ E

A fwnction can be an inpwt

A function is a standalone thing

(e HE e

A function can be a parameter

Yow can bwild very com\a\ex systems
from this 5im\>\e Fowndation!

Core FP principle:
Composition everywhere

What is Composition?

Lego Philosophy

. All pieces are designed to be connected

. Connect two pieces together and get
another "piece” that can still be connected

. The pieces are reusable in many contexts

All pieces are designed 1o be connected

—

[" r P

Connect two pieces ’coqether and
get another “piece” that can still be connected

Yow don’t need to create a
s\accia\ adapter to make
connections.

The pieces are rewsable in different contexts

They are <e\f contained.
No strings attached (iterally)

Make big things from f _sma\\’chinqs in the same way

. Sy
..ﬁﬂiﬁ%hwn e

vilklggk" e

TEeap
S R R B R e, g i, B e R R

& Rk%f:‘kkk‘>A_‘~\h\x§«kk
A . .

e A R

The Yower of

Composition

Function Composition

]

E

Function 1
apple -> banana

H Function 2

banana -> cherry

I—H

]

E

Function 1
apple -> banana

Composition

\ u—J

I—H

Function 2
banana -> cherry

New func’aon

- New Functlon
f i§ apple -> cherry

Can’t tell it was bwilt
from smaller functions!?

Where did the banana go?
(abstraction)

SH™" e

A Very Important Yoint: Tor composition to work properly

e Pata must be immutable

* Tunctions must be self-contained, with no strings attached:
no side-effects, no 1/0, no globals, etc

Building big things from functions
It's compositions all the way up

Low-level operation

string

ToUpper

string

Low-level operation

Low-level operation

Low-level operation

> —>

> —>

Service

Address
—

AddressValidator

Validation
Result

A “Service” is jwst like a microservice
but withowt the “micro” in front

Service Service Service
— —> — —>
Use-case
ChangeProfile ChangeProfile
s UpdateProfileData -mé

Reques

Use-case Use-case Use-case

> —> > —>

$

Web application

Hep | 50— | Htp
Request Response

- >
- >

“Compo.sition is fractal”

The Vower of

(Composition

> = > >

—>
—> > > > |

Http
Request - ¢ I A
. Response

Core FP principle:
Types are not classes

90, what is a type then?

Set of
valid inputs

A type is a just a name
for a set of things

m o E

Set of
valid outputs

A type is a just a name
for a set of things

Function Set of
valid outputs

o U A WDN —

This is type
“integer”

A type is a just a name
for a set of things

abc
but
"cobo
"double"

"end"
"float"

Set of Function
valid inputs

This is 4ype

"string”

A type is a just a name
for a set of things

Donna Roy
Javier Mendoza
Nathan Logan Function Set of
Shawna Ingram valid outputs
Abel Ortiz
Lena Robbins
Gordon Wood

|

This is 4ype

"Yerson”

A type is a just a name
for a set of things

Set of Function
valid inputs

A type is a just a name
for a set of things

Set of Function . ‘
valid inputs & i
o [He

|

This is a type of
Frwit-> Frwit functions

Composition is type checked!

N2
V3

Function 2 O N Function 1
@ apple-> banana e W e . SRR pineapple->apple
- 9y

100%

80%

60%

40%

20%

0%

i

“
-

W Bug fixing

B Unit tests

w Getting the code to
compile

iting co

® Thinking

Put the qood news is..

A lot less bug fixing! @

100% -
W Bug fixing
80% -
m Unit tests
60% -
40% - | Gettil?g the code to
compile
20% - ® Writing code
0% - ' M Thinking

Composition everywhere:
Types can be composed too

Com\aosab\e

-Adgebraie-type system

New types are built from smaller types by:
Composing with “AND”
Composing with “OR”

Only possib\e becawse behavior
is separate from datal

Compose with “AND”

FruitSalad = One each of @ and %~ and g
Example: pairs, twples, records

A record type
\

type FruitSalad = {
Apple: AppleVariety
Banana: BananaVariety
Cherry: CherryVariety

¥

Compose with “OR”

. Not available in (¥
Snack = @ or or @

A choice type

N\

type Snack =

Apple of AppleVariety
Banana of BananaVariety
Cherry of CherryVariety

Real world example
of type composition

Example of some requirements:

We accept three forms of payment:
Cash, Check, or Card.

For Cash we don't need any extra information
For Checks we need a check number
For Cards we need a card type and card number

How wowld yow '\m\a\emev\k his?

In OO design yow wowld probably implement it as an
interface and a set of swbclasses, like this:

interface IPaymentMethod

{..}

class Cash() : IPaymentMethod

{..}

class Check(int checkNo): IPaymentMethod
{..}

class Card(string cardType, string cardNo) : IPaymentMethod
{..}

In T4 yow womld probably implement by composing
types, like this:

type CheckNumber = int /Vrimitive types
type CardNumber = string

type CheckNumber = ...
type CardNumber = .. Choice type
— (using OW)
type CardType = Visa | Mastercard
type CreditCardInfo = {
CardType : CardType
CardNumber : CardNumber

}
N
Record type (wsing AND)

type CheckNumber = ...
type CardNumber = ...
type CardType = ...

type CreditCardInfo = ...

type PaymentMethod =

Cash —
Check of CheckNumber
Card of CreditCardInfo

Choice type

type CheckNumber = ...
type CardNumber = ...

type CardType = ...

type CreditCardInfo = ...
type PaymentMethod =

Cash

Check of CheckNumber
Card of CreditCardInfo

Another primitive type
type PaymentAmount = decimal < P Kl

type Currency = EUR | USD .
Another choice type

type CheckNumber = ... Fi'\ﬂ\ ‘\.l\.“)C b“i\‘t fﬂ)\'!\ “\Q“H

o o smaller 4pes
type CreditCardInfo =
tyrlJeCZ:)r:mentMethod : —\-he VO wer of Comvos'\-\;\o'\

| Check of CheckNumber

| Card of CreditCardInfo
type PaymentAmount = decimal
type Currency = EUR | USD

type Payment = {
Amount : PaymentAmount

— Kecord type

e

Currency: Currency
Method: PaymentMethod }

FP design principle:
Types are executable documentation

The domain on one screen!
type Suit = Club | Diamond | Spade | Heart
type Rank =Two | Three | Four | Five | Six | Seven | Eight
| Nine | Ten | Jack | Queen | King | Ace
type Card = Suit * Rank <

"\'g‘;es can be nowns

type Hand = Card list
type Deck = Card list

type Player = {Name:string; Hand:Hand}

type Game = {Deck:Deck; Players: Player list}

an be verbs
type Deal = Deck — (Deck * Card) (/TH"% ‘

type PickupCard = (Hand * Card) — Hand

type CardType = Visa | Mastercard
type CardNumber = CardNumber of string
type CheckNumber = CheckNumber of int

Can yow guess what
ayment methods are
acce\a’ced?

type PaymentMethod =

Cash — P

Check of CheckNumber
Card of CardType * CardNumber

The End

This is everything you need to know
about functional programming

