
xkcd—a webcomic of romance, sarcasm, math, and language by Randall Munroe

## Regular Expressions

Some people, when confronted with a problem think "I know, I'll use regular expressions." Now they have two problems.

From a post by Jamie Zawinski to Usenet newsgroup alt.religion.emacs in 1997.

## Regular Expressions (Syntax)

- What are they? (syntax)
- What do they mean? (semantics)
- Can a langauge denoted by a regular expression be effectvely recognized? (Implementation)
- Can tokens in a programing language be effectively recognized? (Scanning)


## Regular Expressions (Syntax)

1. Empty. $\emptyset$
2. Atom. Any single symbol of $a \in \Sigma$ is a regular expression.
3. Alternation. If $r_{1}$ is a regular expression and $r_{2}$ is a regular expression, then $\left(r_{1}+r_{2}\right)$ is a regular expression.
4. Concatenation. If $r_{1}$ and $r_{2}$ are regular expressions, then $\left(r_{1} \cdot r_{2}\right)$ is a regular expression.
5. Closure. If $r$ is a regular expression, then $(r)^{*}$ is a regular expression.

## Regular Expressions (Syntax)

We omit parentheses following well-known rules:

- The outermost pair of parentheses is distracting.
- Alternation and concatenation can be considered left associative. (Semantically they are associative operators, so it does not make much difference.)
- Closure binds more tightly than concatenation which binds more tightly than alternation. (Similar to exponentiation, multiplication, and addition in traditional arithmetic expressions.)

Also, we sometimes omit the concatenation operator • using mere juxtaposition to indicate concatenation.

## Regular Expressions (Haskell)

```
data Regex a = Empty | Sym a | Star (Regex a)
    Alt (Regex a) (Regex a) | Concat (Regex a) (Reg
        deriving (Eq, Ord)
```

    Alt (Sym 'a', Concat (Sym 'b', Sym 'c')) -- \(a+(b c\)
    Concat (Alt (Sym 'a', Sym 'b'), Sym 'c') -- ( $a+b$ )

## Regular Expressions (Examples)

$$
\begin{aligned}
& a \cdot b \\
& a+b \\
& a \cdot(b+c) \\
& a+b \cdot c \\
& a^{*} \\
& a+(b \cdot c)^{*} \\
& (a+(b \cdot c))^{*}
\end{aligned}
$$

(using the alphabet $\Sigma=\{a, b, c\}$ )

## Regular Expressions (Examples)

(Omitting the "centered dot" and using the \| for alternation.)

$$
\begin{aligned}
& a b \\
& a \mid b \\
& a(b \mid c) \\
& a \mid b c \\
& a^{*} \\
& a \mid(b c)^{*} \\
& (a \mid(b c))^{*}
\end{aligned}
$$

(using the alphabet $\Sigma=\{a, b, c\}$ )

## Regular Expressions (Examples)

$$
\begin{aligned}
& 01 \\
& 101 \\
& 1+0 \\
& 1(0+1) \\
& 0+10 \\
& 0^{*} \\
& 1+(01)^{*} \\
& \left(0+(10)^{*}\right. \\
& \left(0+(10)^{*}\right)^{*}
\end{aligned}
$$

(using the alphabet $\Sigma=\{0,1\}$ and omitting the $\cdot$ symbol)

## Regular Expressions (Semantics)

That is what regular expressions look like (syntax). What do regular expressions mean (semantics)?
Each regular expression denotes a formal language (a set of strings).
There are an infinite number of regular expressions. (Each one is finitely constructed.) Just like programs in programming languages. We must find a way to define the meaning or denotation of each regular expression.
So, we define a (recursive) function from regular expressions (as pieces of syntax) to sets of strings (languages).

## Regular Expressions (Informal Semantics)

1. Empty. The language with no strings.
2. Atom. The language with one string of length one-a itself. Note that the notation $a$ is ambiguous. It stands for both the symbol and the language.
3. Alternation. $\left(r_{1}+r_{2}\right)$ is the union of two languages.
4. Concatenation. $\left(r_{1} \cdot r_{2}\right)$ is the set all strings beginning in one language and then followed by a string in the second.
5. Closure. $(r)^{*}$ is zero, one, or more strings.

## Regular Expressions (Examples)

$$
\begin{aligned}
a \cdot b & =\{a b\} \\
a+b & =\{a, b\} \\
a \cdot(b+c) & =\{a b, a c\} \\
a+(b \cdot c) & =\{a, b c\} \\
a^{*} & =\{\epsilon, a, a a, a a a, \ldots\} \\
a+(b \cdot c)^{*} & =\{\epsilon, a, b c, b c b c, \ldots\} \\
(a+(b \cdot c))^{*} & =\{\epsilon, a, b c, a a, a b c, b c b c, \ldots\}
\end{aligned}
$$

(using the alphabet $\Sigma=\{a, b, c\}$ )

## Other Definitions

Some authors replace one of the five cases of the definition

1. Empty. $\emptyset$ denoting the language with no strings with another case
2. Epsilon. $\epsilon$ denoting the set consisting of the single string ""' Do you see the difference?

Notice the $\epsilon$ is superfluous as $\{\epsilon\}$ is represented by $\emptyset^{*}$. Can you prove this?

## Regular Expressions (Formal Semantics)

A regular expression denotes a formal language (set of strings) over an alphabet $A$ by means of a function $\mathcal{D}$. The function $\mathcal{D}$ takes a regular expression and associates with it a particular formal language. The function is defined recursively over the five cases of the inductive definition of the set of regular expressions.

1. Empty.

$$
\mathcal{D} \llbracket \emptyset \rrbracket=\{ \}
$$

2. Atom. For each $a \in \Sigma$,

$$
\mathcal{D} \llbracket a \rrbracket=\{a\}
$$

3. Alternation.

$$
\mathcal{D} \llbracket\left(r_{1}+r_{2}\right) \rrbracket=\mathcal{D} \llbracket r_{1} \rrbracket \cup \mathcal{D} \llbracket r_{2} \rrbracket
$$

## Regular Expressions (Formal Semantics)

4. Concatenation.

$$
\mathcal{D} \llbracket\left(r_{1} \cdot r_{2}\right) \rrbracket=\left\{x \cdot y \mid x \in \mathcal{D} \llbracket r_{1} \rrbracket, y \in \mathcal{D} \llbracket r_{2} \rrbracket\right\}
$$

where $x \cdot y$ is string concatenation.
5. Closure.

$$
\mathcal{D} \llbracket(r)^{*} \rrbracket=\bigcup_{i}(\mathcal{D} \llbracket r \rrbracket)^{i}
$$

where $S^{i}$ is defined recursively as follows:

$$
\begin{aligned}
S^{0} & =\{\epsilon\} \\
S^{i+1} & =\left\{x \cdot y \mid x \in S, y \in S^{i}\right\}
\end{aligned}
$$

## $*$ Using the Definitions

$$
\begin{aligned}
\mathcal{D} \llbracket(a \cdot b) \rrbracket & =\{x \cdot y \mid x \in \mathcal{D} \llbracket a \rrbracket, y \in \mathcal{D} \llbracket b \rrbracket\} \\
& =\{x \cdot y \mid x \in\{a\}, y \in\{b\}\} \\
& =\{a \cdot b\}=\{a b\}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{D} \llbracket(a+(a \cdot b)) \rrbracket & =\mathcal{D} \llbracket a \rrbracket \cup \mathcal{D} \llbracket(a \cdot b) \rrbracket \\
& =\{a\} \cup\{a b\} \\
& =\{a, a b\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{D} \llbracket(a+(b \cdot c))^{*} \rrbracket=\bigcup_{i}(\mathcal{D} \llbracket(a+(b \cdot c)) \rrbracket)^{i} \\
& \quad=\{\epsilon\} \cup\{a, b c\} \cup \mathcal{D} \llbracket(a+(b \cdot c)) \rrbracket^{2} \cup \ldots
\end{aligned}
$$

$$
=\{\epsilon, a, b c\} \cup\{a a, a b c, b c a, b c b c\} \cup \cup\}
$$

## * Digression: Induction

Is the recursively defined function D well-defined? Yes. When are such recursively defined functions well-defined? Over free-generated sets.

## * Digression: Induction

Consider the following inductive definition of a subset $M$ of $N a t$, the natural numbers, using integer multiplication :

- $1 \in M$,
- if $n \in M$, then $9 \cdot n \in M$,
- if $n \in M$, then $23 \cdot n \in M$.

Suppose we define the function $g: M \rightarrow N a t$ inductively by:

- $g(1)=1$,
- $g(9 \cdot n)=9$,
- $g(23 \cdot n)=23$.

Prove that $0=1$ !

## More Regular Expressions

To make regular expressions more convenient, regular expressions are almost always extended with new notation. Here are some additional meta-symbols commonly seen (perhaps with different syntax). Regular expressions with these new meta-symbols can be defined in terms of the original definitions. Let $r$ be a regular expression over the alphabet $\Sigma$.

1. Optional. $r$ ? $=\left(r+\emptyset^{*}\right)$
2. One or more. (This is a second and conflicting use of the meta-character + .) $r^{+}=\left(r \cdot r^{*}\right)$
3. Any. $=(a+b+\ldots+y+z)$ where $\Sigma=a, b, \ldots, y, z$.
4. Range. $[a-z]=(a+b+\ldots+y+z)$. (Assumes that $\Sigma$ is ordered.)
5. Range complement. $[\neg c-x]=(a+b+y+z)$. (Assumes that $\Sigma$ is ordered.)

## Where are regular expressions used?

## Grep

The program grep is a command-line utility for searching text originally written for Unix. The grep command searches text files for lines matching a given regular expression and prints matching lines to the programs standard output.

## Grep

## Suppose the file preamble.txt has the following lines:

```
We the People of the United States, in Order to form a more perfect
Union, establish Justice, insure domestic Tranquility, provide for the
common defence, promote the general Welfare, and secure the Blessings
of Liberty to ourselves and our Posterity, do ordain and establish
this Constitution for the United States of America.
> grep and preamble.txt
common defence, promote the general Welfare, and secure the Blessings
of Liberty to ourselves and our Posterity, do ordain and establish
> grep -i people preamble.txt
We the People of the United States, in Order to form a more perfect
```

```
> grep -w do preamble.txt
of Liberty to ourselves and our Posterity, do ordain and establish
```

(But does not match "domestic.")
> grep -E -w "(defense)|(defence)" preamble.txt
common defence, promote the general Welfare, and secure the Blessings

## Practical Regular Expressions

## grep options regexp filename

Options:
-E extended regular expression
-i ignore case
-x match whole line
-w match word in line
Syntax of regular expressions for grep

| l | or |
| :--- | :--- |
| $[$ | any |
| [] | set |
| $\left[{ }^{\wedge}\right]$ | set compliment |


| $\$$ | end of line |
| :--- | :--- |
| $?$ | optional |
| $\{n, m\}$ | $n$ through $m$ times |
| () | grouping |

## grep

$$
\text { grep -E -w -i '[a-f]\{3,4\}' /usr/dict/words }
$$

## grep

grep -E -w -i '[a-f]\{3,4\}' /usr/dict/words
beef
dead
deaf
fade
feed
among others.

## grep

$$
\text { grep -E '.\{5,\}' /usr/dict/words }
$$

## grep

$$
\text { grep -E '.\{5,\}' /usr/dict/words }
$$

Aarhus
Aaron
Ababa
aback
abacus
zombie
zoology
Zoroastrian
zucchini
Zurich
zygote

## grep

grep -i -E '[aeiou]\{4,\}' /usr/dict/words

## grep

grep -i -E '[aeiou]\{4,\}' /usr/dict/words
aqueous
Hawaiian
IEEE
obsequious
onomatopoeia
pharmacopoeia
prosopopoeia
queue
Sequoia

## grep

grep -i -E '(q[^u]|q\$)' /usr/dict/words

## grep

grep -i -E '(q[^u]|q\$)' /usr/dict/words

CEQ
Colloq
IQ
Iraq
q
Qatar
QED
q's
seq

## grep

Is there a regular expression that matches those words whose letters appear in alphabetical order?

```
grep -x -E <regular expression> /usr/dict/words
```


## grep

Is there a regular expression that matches those words whose letters appear in alphabetical order?

```
grep -x -E <regular expression> /usr/dict/words
grep -x -E
'a?b?c?d?e?f?g?h?i?j?k?l?m?n?o?p?q?r?s?t?u?v?w?x?y?z?'
/usr/dict/words
```


## grep

Is there a regular expression that matches those words whose letters appear in alphabetical order?

```
grep -x -E <regular expression> /usr/dict/words
grep -x -E
'a?b?c?d?e?f?g?h?i?j?k?l?m?n?o?p?q?r?s?t?u?v?w?x?y?z?'
/usr/dict/words
```

almost
begin
below
biopsy
dirty
empty
first
glory
(Some of the longer words.)

## grep

Can we modify the previous example to allow double letters?
grep $-x-E$
$' \mathrm{a} * \mathrm{~b} * \mathrm{c} * \mathrm{~d} * \mathrm{e} * \mathrm{f} * \mathrm{~g} * \mathrm{~h} * \mathrm{i} * \mathrm{j} * \mathrm{k} * \mathrm{l} * \mathrm{~m} * \mathrm{n} * \mathrm{o} * \mathrm{p} * \mathrm{q} * \mathrm{r} * \mathrm{~s} * \mathrm{t} * \mathrm{u} * \mathrm{v} * \mathrm{w} * \mathrm{x} * \mathrm{y} * \mathrm{z} * '$ /usr/dict/words
accent
almost
biopsy
choosy
effort
floppy
glossy
knotty
(Some of the longer words.)

## grep

grep -E -e ' (y.*) \{3,\}' /usr/dict/wordsA
The words with at least three y's.
polytypy chromosomal variation between populations psychophysiology the way mind and body interact synonymy the state of being synonymous
syzygy straight-line alignment of 3 celestial bodies

## Back references

grep -E -e '(.) \1\1' /usr/dict/words

