
xkcd—a webcomic of romance, sarcasm, math, and language by
Randall Munroe

Regular Expressions

Some people, when confronted with a problem think “I
know, I’ll use regular expressions.” Now they have two
problems.

From a post by Jamie Zawinski to Usenet newsgroup
alt.religion.emacs in 1997.

Regular Expressions (Syntax)

I What are they? (syntax)

I What do they mean? (semantics)

I Can a langauge denoted by a regular expression be effectvely
recognized? (Implementation)

I Can tokens in a programing language be effectively
recognized? (Scanning)

Regular Expressions (Syntax)

1. Empty. ∅
2. Atom. Any single symbol of a ∈ Σ is a regular expression.

3. Alternation. If r1 is a regular expression and r2 is a regular
expression, then (r1 + r2) is a regular expression.

4. Concatenation. If r1 and r2 are regular expressions, then
(r1 · r2) is a regular expression.

5. Closure. If r is a regular expression, then (r)∗ is a regular
expression.

Regular Expressions (Syntax)

We omit parentheses following well-known rules:

I The outermost pair of parentheses is distracting.

I Alternation and concatenation can be considered left
associative. (Semantically they are associative operators, so it
does not make much difference.)

I Closure binds more tightly than concatenation which binds
more tightly than alternation. (Similar to exponentiation,
multiplication, and addition in traditional arithmetic
expressions.)

Also, we sometimes omit the concatenation operator · using mere
juxtaposition to indicate concatenation.

Regular Expressions (Haskell)

data Regex a = Empty | Sym a | Star (Regex a)
Alt (Regex a) (Regex a) | Concat (Regex a) (Regex a)

deriving (Eq , Ord)

Alt (Sym ’a’, Concat (Sym ’b’, Sym ’c’)) -- a+(bc)
Concat (Alt (Sym ’a’, Sym ’b’), Sym ’c’) -- (a+b)c

Regular Expressions (Examples)

a · b
a + b
a · (b + c)
a + b · c
a∗

a + (b · c)∗

(a + (b · c))∗

(using the alphabet Σ = {a, b, c})

Regular Expressions (Examples)

(Omitting the “centered dot” and using the | for alternation.)

ab
a | b
a(b | c)
a | bc
a∗

a | (bc)∗

(a | (bc))∗

(using the alphabet Σ = {a, b, c})

Regular Expressions (Examples)

01
101
1 + 0
1(0 + 1)
0 + 10
0∗

1 + (01)∗

(0 + (10)∗

(0 + (10)∗)∗

(using the alphabet Σ = {0, 1} and omitting the · symbol)

Regular Expressions (Semantics)

That is what regular expressions look like (syntax). What do
regular expressions mean (semantics)?
Each regular expression denotes a formal language (a set of
strings).
There are an infinite number of regular expressions. (Each one is
finitely constructed.) Just like programs in programming languages.
We must find a way to define the meaning or denotation of each
regular expression.
So, we define a (recursive) function from regular expressions (as
pieces of syntax) to sets of strings (languages).

Regular Expressions (Informal Semantics)

1. Empty. The language with no strings.

2. Atom. The language with one string of length one–a itself.
Note that the notation a is ambiguous. It stands for both the
symbol and the language.

3. Alternation. (r1 + r2) is the union of two languages.

4. Concatenation. (r1 · r2) is the set all strings beginning in one
language and then followed by a string in the second.

5. Closure. (r)∗ is zero, one, or more strings.

Regular Expressions (Examples)

a · b = {ab}
a + b = {a, b}

a · (b + c) = {ab, ac}
a + (b · c) = {a, bc}

a∗ = {ε, a, aa, aaa, . . .}
a + (b · c)∗ = {ε, a, bc, bcbc, . . .}

(a + (b · c))∗ = {ε, a, bc, aa, abc, bcbc, . . .}

(using the alphabet Σ = {a, b, c})

Other Definitions

Some authors replace one of the five cases of the definition

1. Empty. ∅ denoting the language with no strings

with another case

1. Epsilon. ε denoting the set consisting of the single string “”

Do you see the difference?

Notice the ε is superfluous as {ε} is represented by ∅∗. Can you
prove this?

Regular Expressions (Formal Semantics)
A regular expression denotes a formal language (set of strings) over
an alphabet A by means of a function D. The function D takes a
regular expression and associates with it a particular formal
language. The function is defined recursively over the five cases of
the inductive definition of the set of regular expressions.

1. Empty.

DJ∅K = {}

2. Atom. For each a ∈ Σ,

DJaK = {a}

3. Alternation.

DJ(r1 + r2)K = DJr1K ∪ DJr2K

Regular Expressions (Formal Semantics)

4. Concatenation.

DJ(r1 · r2)K = {x · y | x ∈ DJr1K, y ∈ DJr2K}

where x · y is string concatenation.

5. Closure.
DJ(r)∗K =

⋃
i

(DJrK)i

where S i is defined recursively as follows:

S0 = {ε}
S i+1 =

{
x · y | x ∈ S , y ∈ S i

}

∗Using the Definitions

DJ(a · b)K = {x · y | x ∈ DJaK, y ∈ DJbK}
= {x · y | x ∈ {a}, y ∈ {b}}
= {a · b} = {ab}

DJ(a + (a · b))K = DJaK ∪ DJ(a · b)K
= {a} ∪ {ab}
= {a, ab}

DJ(a + (b · c))∗K =
⋃
i

(DJ(a + (b · c))K)i

= {ε} ∪ {a, bc} ∪ DJ(a + (b · c))K2 ∪ . . .
= {ε, a, bc} ∪ {aa, abc, bca, bcbc} ∪ . . .
= {ε, a, aa, bc, abc, bca, bcbc} ∪ . . .
= {ε, a, aa, bc, aaa, abc, bca, aabc, abca, bcaa, bcbc, . . .}

∗ Digression: Induction

Is the recursively defined function D well-defined? Yes.
When are such recursively defined functions well-defined? Over
free-generated sets.

∗ Digression: Induction

Consider the following inductive definition of a subset M of Nat,
the natural numbers, using integer multiplication ·:

I 1 ∈ M,

I if n ∈ M, then 9 · n ∈ M,

I if n ∈ M, then 23 · n ∈ M.

Suppose we define the function g : M → Nat inductively by:

I g(1) = 1,

I g(9 · n) = 9,

I g(23 · n) = 23.

Prove that 0=1!

More Regular Expressions

To make regular expressions more convenient, regular expressions
are almost always extended with new notation. Here are some
additional meta-symbols commonly seen (perhaps with different
syntax). Regular expressions with these new meta-symbols can be
defined in terms of the original definitions. Let r be a regular
expression over the alphabet Σ.

1. Optional. r? = (r + ∅∗)
2. One or more. (This is a second and conflicting use of the

meta-character +.) r+ = (r · r∗)
3. Any. . = (a + b + . . .+ y + z) where Σ = a, b, . . . , y , z .

4. Range. [a− z] = (a + b + . . .+ y + z). (Assumes that Σ is
ordered.)

5. Range complement. [¬c − x] = (a + b + y + z). (Assumes
that Σ is ordered.)

Where are
regular expressions

used?

Grep

The program grep is a command-line utility for searching text
originally written for Unix. The grep command searches text files
for lines matching a given regular expression and prints matching
lines to the programs standard output.

Grep

Suppose the file preamble.txt has the following lines:

We the People of the United States, in Order to form a more perfect

Union, establish Justice, insure domestic Tranquility, provide for the

common defence, promote the general Welfare, and secure the Blessings

of Liberty to ourselves and our Posterity, do ordain and establish

this Constitution for the United States of America.

> grep and preamble.txt

common defence, promote the general Welfare, and secure the Blessings

of Liberty to ourselves and our Posterity, do ordain and establish

> grep -i people preamble.txt

We the People of the United States, in Order to form a more perfect

> grep -w do preamble.txt

of Liberty to ourselves and our Posterity, do ordain and establish

(But does not match “domestic.”)

> grep -E -w "(defense)|(defence)" preamble.txt

common defence, promote the general Welfare, and secure the Blessings

Practical Regular Expressions

grep options regexp filename

Options:

-E extended regular expression

-i ignore case

-x match whole line

-w match word in line

Syntax of regular expressions for grep

| or $ end of line

. any ? optional

[] set {n,m} n through m times

[^] set compliment () grouping

grep

grep -E -w -i ’[a-f]{3,4}’ /usr/dict/words

beef

dead

deaf

fade

feed

among others.

grep

grep -E -w -i ’[a-f]{3,4}’ /usr/dict/words

beef

dead

deaf

fade

feed

among others.

grep

grep -E ’.{5,}’ /usr/dict/words

Aarhus

Aaron

Ababa

aback

abacus

...

zombie

zoology

Zoroastrian

zucchini

Zurich

zygote

grep

grep -E ’.{5,}’ /usr/dict/words

Aarhus

Aaron

Ababa

aback

abacus

...

zombie

zoology

Zoroastrian

zucchini

Zurich

zygote

grep

grep -i -E ’[aeiou]{4,}’ /usr/dict/words

aqueous

Hawaiian

IEEE

obsequious

onomatopoeia

pharmacopoeia

prosopopoeia

queue

Sequoia

grep

grep -i -E ’[aeiou]{4,}’ /usr/dict/words

aqueous

Hawaiian

IEEE

obsequious

onomatopoeia

pharmacopoeia

prosopopoeia

queue

Sequoia

grep

grep -i -E ’(q[^u]|q$)’ /usr/dict/words

CEQ

Colloq

IQ

Iraq

q

Qatar

QED

q’s

seq

grep

grep -i -E ’(q[^u]|q$)’ /usr/dict/words

CEQ

Colloq

IQ

Iraq

q

Qatar

QED

q’s

seq

grep
Is there a regular expression that matches those words whose
letters appear in alphabetical order?

grep -x -E <regular expression> /usr/dict/words

grep -x -E

’a?b?c?d?e?f?g?h?i?j?k?l?m?n?o?p?q?r?s?t?u?v?w?x?y?z?’

/usr/dict/words

almost

begin

below

biopsy

dirty

empty

first

glory

(Some of the longer words.)

grep
Is there a regular expression that matches those words whose
letters appear in alphabetical order?

grep -x -E <regular expression> /usr/dict/words

grep -x -E

’a?b?c?d?e?f?g?h?i?j?k?l?m?n?o?p?q?r?s?t?u?v?w?x?y?z?’

/usr/dict/words

almost

begin

below

biopsy

dirty

empty

first

glory

(Some of the longer words.)

grep
Is there a regular expression that matches those words whose
letters appear in alphabetical order?

grep -x -E <regular expression> /usr/dict/words

grep -x -E

’a?b?c?d?e?f?g?h?i?j?k?l?m?n?o?p?q?r?s?t?u?v?w?x?y?z?’

/usr/dict/words

almost

begin

below

biopsy

dirty

empty

first

glory

(Some of the longer words.)

grep

Can we modify the previous example to allow double letters?

grep -x -E

’a*b*c*d*e*f*g*h*i*j*k*l*m*n*o*p*q*r*s*t*u*v*w*x*y*z*’

/usr/dict/words

accent

almost

biopsy

choosy

effort

floppy

glossy

knotty

(Some of the longer words.)

grep

grep -E -e ’(y.*){3,}’ /usr/dict/wordsA

The words with at least three y’s.

polytypy chromosomal variation between populations

psychophysiology the way mind and body interact

synonymy the state of being synonymous

syzygy straight-line alignment of 3 celestial bodies

grep

grep -E -e ’(y.*){3,}’ /usr/dict/wordsA

The words with at least three y’s.

polytypy chromosomal variation between populations

psychophysiology the way mind and body interact

synonymy the state of being synonymous

syzygy straight-line alignment of 3 celestial bodies

Back references

grep -E -e ’(.)\1\1’ /usr/dict/words

AAA

AAAS

IEEE

iii

viii

