
Software and systems engineering —
Software testing —
Part 5:
Keyword-Driven Testing
Ingénierie du logiciel et des systèmes — Essais du logiciel —
Partie 5: Essais axés sur des mots-clés

INTERNATIONAL
STANDARD

ISO/IEC/
IEEE

29119-5

Reference number
ISO/IEC/IEEE 29119-5:2016(E)

First edition
2016-11-15

© ISO/IEC 2016
© IEEE 2016

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

© ISO/IEC 2016 – All rights reserved
ii © IEEE 2016 – All rights reserved

ISO/IEC/IEEE 29119-5:2016(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO/IEC 2016, Published in Switzerland
© IEEE 2016

Ch. de Blandonnet 8 • CP 401 3 Park Avenue, New York
CH-1214 Vernier, Geneva, Switzerland NY 10016-5997, USA
Tel. +41 22 749 01 11
Fax +41 22 749 09 47

www.iso.org www.ieee.org

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

iii

This document was developed under the Partner Standards Development Organization cooperation
agreement between ISO and IEEE, as approved by Council Resolution 49/2007, and is submitted to
a parallel approval vote by the ISO/IEC national bodies and IEEE.

Positive votes shall not be accompanied by comments.

Negative votes shall be accompanied by the relevant technical reasons.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

iv © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

v

Contents Page

1 Scope .. 1

2 Conformance ... 1
2.1 Intended usage .. 1
2.2 Full conformance ... 1
2.3 Tailored conformance ... 2

3 Normative references .. 2
4 Terms and definitions ... 2

5 Introduction to Keyword-Driven Testing ... 4
5.1 Overview ... 4
5.2 Layers in Keyword-Driven Testing .. 7
5.2.1 Overview ... 7
5.2.2 Domain layer .. 8
5.2.3 Test interface layer .. 9
5.2.4 Multiple layers .. 9
5.3 Types of keywords .. 10
5.3.1 Simple keywords ... 10
5.3.2 Composite keywords .. 11
5.3.3 Navigation/interaction (input) and verification (output) .. 14
5.3.4 Keywords and test result .. 14
5.4 Keywords and Data ... 15

6 Application of Keyword-Driven Testing .. 16
6.1 Overview ... 16
6.2 Identifying keywords ... 16
6.3 Composing test cases .. 17
6.4 Keywords and data-driven testing ... 18
6.5 Modularity and refactoring ... 19
6.6 Keyword-Driven Testing in the Test Design Process .. 19
6.6.1 Overview ... 19
6.6.2 TD1 Identify Feature Sets ... 20
6.6.3 TD2 Derive Test Conditions ... 20
6.6.4 TD3 Derive Test Coverage Items ... 20
6.6.5 TD4 Derive Test Cases .. 21
6.6.6 TD5 Assemble Test Sets ... 22
6.6.7 TD6 Derive Test Procedures .. 22
6.7 Converting non keyword-driven test cases into Keyword-Driven Testing 22

7 Keyword-Driven Testing Frameworks ... 22
7.1 Overview ... 22
7.2 Components of a Keyword-Driven Testing framework ... 23
7.2.1 Overview ... 23
7.2.2 Keyword-driven Editor .. 25
7.2.3 Decomposer ... 26
7.2.4 Data sequencer .. 26
7.2.5 Manual test assistant .. 26
7.2.6 Tool bridge ... 26
7.2.7 Test execution environment and execution engine ... 26
7.2.8 Keyword library ... 27
7.2.9 Data ... 27
7.2.10 Script repository .. 27
7.3 Basic attributes of the Keyword-Driven Testing framework ... 27
7.3.1 General information on basic attributes ... 27

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

vi © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

7.3.2 General attributes ..27
7.3.3 Dedicated keyword-driven editor (tool) ...28
7.3.4 Decomposer and data sequencer ..29
7.3.5 Manual test assistant (tool) ..29
7.3.6 Tool bridge ...29
7.3.7 Test execution engine ...29
7.3.8 Keyword library ..30
7.3.9 Script repository ..30
7.4 Advanced attributes of frameworks ...30
7.4.1 General information on advanced attributes ..30
7.4.2 General attributes ..30
7.4.3 Dedicated keyword-driven editor (tool) ...31
7.4.4 Decomposer and data sequencer ..31
7.4.5 Manual test assistant ..31
7.4.6 Tool bridge ...31
7.4.7 Test execution environment and execution engine ...32
7.4.8 Keyword library ..33
7.4.9 Test data support ...33
7.4.10 Script repository ..33

8 Data interchange ..33

Annex A (normative) Conventions ..34

Annex B (informative) Benefits and Issues of Keyword-Driven Testing ...35
B.1 General benefits of Keyword-Driven Testing ..35
B.2 Benefits of Keyword-Driven Testing for test automation ..35
B.3 Benefits of Keyword-Driven Testing for manual testing ...36
B.4 Possible issues with Keyword-Driven Testing ...36

Annex C (informative) Getting started with Keyword-Driven Testing ..37
C.1 General ..37
C.2 Identifying Keywords ..37
C.3 Composing test cases ...38
Annex D (informative) Roles and Tasks ..39
D.1 Overview – Roles and Tasks ..39
D.2 Domain expert ..39
D.3 Test designer ..39
D.4 Test automation expert ...40

Annex E (informative) Basic keywords ...41
E.1 Overview ...41
E.2 Basic keywords for a GUI ...41
E.3 Example application of basic keywords ..45

Annex F (informative) Examples ...49
F.1 Overview ...49
F.2 Example: test procedure from ISO/IEC/IEEE 29119-3 ..49
F.3 Example: Test of shopping procedure with low-level keywords ..51
F.4 Example for calculator with low-level keywords ..52
F.5 Example for calculator with domain level keywords ...52
Annex G Bibliography ..54

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

vii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO
and IEC have established a joint technical committee, ISO/IEC JTC 1.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards
through a consensus development process, approved by the American National Standards Institute, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers
are not necessarily members of the Institute and serve without compensation. While the IEEE administers the
process and establishes rules to promote fairness in the consensus development process, the IEEE does not
independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of ISO/IEC JTC 1 is to prepare International Standards. Draft International Standards adopted
by the joint technical committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is called to the possibility that implementation of this standard may require the use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. ISO/IEEE is not responsible for identifying essential
patents or patent claims for which a license may be required, for conducting inquiries into the legal validity or
scope of patents or patent claims or determining whether any licensing terms or conditions provided in
connection with submission of a Letter of Assurance or a Patent Statement and Licensing Declaration Form, if
any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly
advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is
entirely their own responsibility. Further information may be obtained from ISO or the IEEE Standards
Association.

ISO/IEC/IEEE 29119-5 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 7, Software and systems engineering, in cooperation with the Software & Systems
Engineering Standards Committee of the IEEE Computer Society, under the Partner Standards Development
Organization cooperation agreement between ISO and IEEE.

ISO/IEC/IEEE 29119 consists of the following parts, under the general title Software and systems engineering
— Software testing:

 Part 1: Concepts and definitions

 Part 2: Test processes

 Part 3: Test documentation

 Part 4: Test techniques

 Part 5: Keyword-Driven Testing

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

viii © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

ix

Introduction

The purpose of the ISO/IEC/IEEE 29119 series of software testing standards is to define an internationally-
agreed set of standards for software testing that can be used by any organization when managing or
performing any form of software testing.

This part of ISO/IEC/IEEE 29119 defines a unified approach for describing test cases in a modular way, which
assists with the creation of items like keyword-driven test specifications and test automation frameworks. The
term "keyword" refers to the elements which are, once defined, used to compose test cases, such as with
building blocks. ISO/IEC/IEEE 29119-5 will explain the main concepts and application of Keyword-Driven
Testing. It will also define attributes of frameworks designed to support Keyword-Driven Testing.

The concepts and definitions relating to software testing defined in ISO/IEC/IEEE 29119-1 are also applicable
to ISO/IEC/IEEE 29119-5.

The test process model on which the Keyword-Driven Testing framework is based is defined in ISO/IEC/IEEE
29119-2 Test Processes. It comprises test process descriptions that define the software testing processes at
the organizational level, test management level and dynamic test level. Supporting informative diagrams
describing the processes are also provided in ISO/IEC/IEEE 29119-2. However, ISO/IEC/IEEE 29119-5
describes a specific implementation of the test design and implementation processes of ISO/IEC/IEEE
29119-2; in particular TD4 (Derive Test Cases), TD5 (Assemble Test Sets) and TD6 (Derive Test Procedures)
as here applied to Keyword-Driven Testing.

The templates and examples of test documentation as defined in ISO/IEC/IEEE 29119-3 are also applicable
to ISO/IEC/IEEE 29119-5.

Software test design techniques that can be used during test design are defined in ISO/IEC/IEEE 29119-4
Test Techniques. The application of ISO/IEC/IEEE 29119-4 is assumed when designing test cases that are
then described by keywords according to ISO/IEC/IEEE 29119-5.

This part of ISO/IEC/IEEE 29119-5 has the following structure:

 terms and definitions can be found in clause 4

 an introduction to Keyword-Driven Testing is given in clause 5

 the application of Keyword-Driven Testing is explained in clause 6

 frameworks for Keyword-Driven Testing are described in clause 7

 data interchange is covered in clause 8

 Annex A states naming conventions for keywords

 Annex B names benefits that can be achieved with Keyword-Driven Testing

 Annex C gives advice on how interested parties wanting to use Keyword-Driven Testing can start

 Annex D describes roles that can be used in Keyword-Driven Testing

 Annex E contains examples of basic keywords that can be used to create test cases

 Annex F contains examples for keyword test cases

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

INTERNATIONAL STANDARD ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

1

Software and Systems Engineering — Software Testing —
Part 5: Keyword-Driven Testing

1 Scope

This part of ISO/IEC/IEEE 29119 defines an efficient and consistent solution for Keyword-Driven Testing by:

 giving an introduction to Keyword-Driven Testing;

 providing a reference approach to implement Keyword-Driven Testing;

 defining requirements on frameworks for Keyword-Driven Testing to enable testers to share their work
items, such as test cases, test data, keywords, or complete test specifications;

 defining requirements for tools that support Keyword-Driven Testing. These requirements could apply to
any tool that supports the Keyword-Driven approach (e.g., test automation, test design and test
management tools);

 defining interfaces and a common data exchange format to ensure that tools from different vendors can
exchange their data (e.g. test cases, test data and test results);

 defining levels of hierarchical keywords, and advising use of hierarchical keywords. This includes
describing specific types of keywords (e.g. keywords for navigation or for checking a value) and when to
use "flat" structured keywords;

 providing an initial list of example generic technical (low-level) keywords, such as "inputData" or
"checkValue". These keywords can be used to specify test cases on a technical level, and may be
combined to create business-level keywords as required.

NOTE This standard is applicable to all those who want to create keyword-driven test specifications, create
corresponding frameworks, or build test automation based on keywords.

2 Conformance

2.1 Intended usage

The requirements in ISO/IEC/IEEE 29119-5 are contained in Clause 7 and in Annex A. ISO/IEC/IEEE 29119-5
provides requirements on frameworks supporting the application of Keyword-Driven Testing. It is recognized
that particular projects or organizations may not need to use all of the components defined in this standard.
Therefore, implementation of ISO/IEC/IEEE 29119-5 typically involves selecting a set of components or parts
of components suitable for the organization or project. There are two ways that an organization can claim to
conform to the provisions of this standard.

The organization or individual shall assert whether full or tailored conformance to this standard is claimed.

2.2 Full conformance

Full conformance is achieved by demonstrating that all of the Keyword-Driven Testing requirements (i.e. shall
statements) defined in ISO/IEC/IEEE 29119-5 have been satisfied.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

2 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

2.3 Tailored conformance

When ISO/IEC/IEEE 29119-5 is used for implementing components of frameworks that do not qualify for full
conformance, the subset of components for which tailored conformance is claimed should be recorded.
Tailored conformance is achieved by demonstrating that all of the requirements (i.e. shall statements) for the
recorded subset of components have been satisfied.

Where tailoring occurs, the justification shall be provided, either directly or by reference, whenever a
requirement defined in clauses 7 and Annex A of ISO/IEC/IEEE 29119-5 is not followed. All tailoring decisions
shall be recorded with their rationale, including the consideration of any applicable risks. Tailoring decisions
shall be agreed to by the relevant stakeholders.

EXAMPLE Tool vendors may in their portfolio provide only part of a keyword-driven test framework, and thus decide
not to implement requirements that are covered by complementary tools (e.g. a vendor only provides an execution engine,
but no keyword driven editor – then the execution engine can still be conforming with the standard).

3 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document, including any amendments, applies.

ISO/IEC/IEEE 24765, Systems and software engineering – Vocabulary

ISO/IEC/IEEE 29119-1, Software and systems engineering – Software Testing – Part 1: Concepts and
Definitions

ISO/IEC/IEEE 29119-2, Software and systems engineering – Software Testing – Part 2: Test Processes

ISO/IEC/IEEE 29119-3, Software and systems engineering – Software Testing – Part 3: Test Documentation

ISO/IEC/IEEE 29119-4, Software and systems engineering – Software Testing – Part 4: Test Techniques

Other standards useful for the implementation and interpretation of this standard are listed in the bibliography.

4 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC/IEEE 24765 and the following
apply.

NOTE Use of the terminology of ISO/IEC/IEEE 29119-5 is for ease of reference and is not mandatory for
conformance with ISO/IEC/IEEE 29119-5. The following terms and definitions are provided to assist with the
understanding and readability of ISO/IEC/IEEE 29119-5. Only terms critical to the understanding of ISO/IEC/IEEE 29119-5
are included. This clause is not intended to provide a complete list of testing terms. The Systems and Software
Engineering vocabulary ISO/IEC/IEEE 24765 can be referenced for terms not defined in this standard. ISO/IEC/IEEE
29119-1 can be referenced for terms related to software testing in general. ISO/IEC/IEEE 29119-5 only defines terms
specific to Keyword-Driven Testing.

4.1
domain layer
highest level of abstraction for the test item

Note 1 to entry: Keywords on this level are chosen in a way that is familiar to domain experts.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

3

4.2
high-level keyword
keyword that covers complex activities that may be composed from other keywords and is used by domain
experts to assemble keyword test cases

4.3
keyword
one or more words used as a reference to a specific set of actions intended to be performed during the
execution of one or more test cases

Note 1 to entry: The actions include interactions with the User Interface during the test, verification, and specific actions to
set up a test scenario.

Note 2 to entry: Keywords are named using at least one verb.

Note 3 to entry: Composite keywords can be constructed based on other keywords.

4.4
keyword dictionary
keyword library
repository containing a set of keywords reflecting the language and level of abstraction used to write test
cases

4.5
Keyword-Driven Testing
testing using test cases composed from keywords

4.6
Keyword-Driven Testing framework
test framework covering the functional capabilities of a keyword-driven editor, decomposer, data sequencer,
manual test assistant, tool bridge, data and script repositories, a keyword library and the test execution
environment

4.7
keyword execution code
implementation of a keyword that is intended to be executed by a test execution engine

4.8
keyword test case
sequence of keywords and the required values for their associated parameters (as applicable) that are
composed to describe the actions of a test case

4.9
low-level keyword
keyword that covers only one or very few simple actions and is not composed from other keywords

4.10
manual testing
humans performing tests by entering information into a test item and verifying the results

Note 1 to entry: Automated testing uses tools, robots, and other test execution engines to perform tests. Manual testing
does not use these items.

4.11
test execution engine
tool implemented in software and sometimes in hardware that can manipulate the test item to execute test
cases

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

4 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Note 1 to entry: A typical test execution engine includes unit test tool frameworks, stimulation-command systems, capture
and playback tools or hardware robots along with the software to control them.

4.12
test framework
environment that facilitates testing

4.13
test interface
interface to the test item used to stimulate the test item, to get responses (e.g. actual results), or both

Note 1 to entry: The GUI, API or SOA interfaces are typical test interfaces.

Note 2 to entry: Stimulating the test item can involve passing data into it via computer interfaces or attached hardware.

Note 3 to entry: Getting responses includes getting information from the test item under test or associated hardware.

4.14
test interface layer
lowest level of abstraction for keywords, which interacts with the test item directly and encapsulates the
atomic (lowest level) interactions at the test interface

5 Introduction to Keyword-Driven Testing

5.1 Overview

Keyword-Driven Testing is a test case specification approach that is commonly used to support test
automation and the development of test automation frameworks. However, it can also be used if no
automation approach is planned or established.

In principle, Keyword-Driven Testing can be applied at all testing levels (e.g. component testing, system
testing) and for various types of testing (e.g. functional testing, reliability testing). Keyword-Driven Testing
benefits include the following:

 ease of use

 understandability

 maintainability

 test information reuse

 support of test automation

 potential cost and schedule savings

The fundamental idea in Keyword-Driven Testing is to provide a set of "building blocks", referred to as
keywords, that can be used to create manual or automated test cases without requiring detailed knowledge of
programming or test tool expertise. The ultimate goal is to provide a basic, unambiguous set of keywords
comprehensive enough so that most, if not all, required test cases can be entirely composed of these
keywords. The vocabulary included in these dictionaries or libraries of keywords is, therefore, a reflection of
the language and level of abstraction used to write the test cases, and not of any standard computer
programming language.

For test automation, each keyword needs to be implemented in software.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

5

NOTE 1 When keywords are not used, test cases are usually written using natural language or written in a computer
programming language. Compared with natural language, keywords have the advantage of being less ambiguous and
more precise. Compared with a computer programming language, when keywords are well defined and structured, they
have the advantage of being understandable by many people who do not have software engineering skills.

A keyword is usually defined at the following two levels:

 At a low level, each keyword is associated with a detailed set of one or more actions that describe the
exact steps that are to be performed.

 At a high level, a meaningful name is used to identify the keyword. This keyword may require a set of
input parameters, which would also belong to this level in the structure. The keyword and the parameters
together comprise a high-level description of the actions associated with a test case.

Thus, instead of describing each individual action in test cases, tests can be defined at a higher level of
abstraction using keywords. Higher levels of abstraction can be achieved by using composite keywords, which
are comprised of other keywords to describe associated actions.

An example of the benefits obtained from both manual and automated keyword-driven test cases is enhanced
maintainability. Consider a case where the precise set of actions to carry out a commonly repeated operation
has changed. The modularity introduced by keywords allows modification of only the actions for the changed
operation in the relevant lower-level keyword, leaving the test cases untouched. Without modularity, it may be
necessary to modify each occurrence of this operation in all of the test cases.

Modularization has helped popularize this approach. If test automation is required, a framework can be
created to interpret manually created keyword test cases as executable test automation scripts. This is
achieved by implementing test automation code for each keyword (e.g. keyword execution code).

NOTE 2 Testing tools can be used to support Keyword-Driven Testing, but the available tools may be limited in their
capability to support all the concepts described in this standard.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

6 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Figure 1 — Relationships between Keyword-Driven Testing entities

A test procedure can have multiple test cases in it, and a test case can, in turn, be part of different test
procedures (Figure 1). Test cases can be either manual test cases or keyword test cases. A keyword test
case implements a manual test case.

A keyword test case is typically composed of a sequenced series of keywords. Keywords should be chosen to
be modular and generic so that they can be reused in many test cases. Keywords can also be used more than
once in the same test case. A test case is composed from test actions. Keywords represent test actions.

NOTE 3 It is possible to map several keywords to a single action. It is also possible to define keywords in a way that
each keyword represents one action. In these cases, a one-to-one relationship exists between actions and keywords.
However, a test designer can decide to structure keywords in a different way (e.g. use more than one keyword to
implement an action, or to combine two or more actions into one keyword). This relationship is not a 1:1 relationship in
Figure 1.

Test automation is an option that can be chosen when implementing Keyword-Driven Testing, but a manual
approach is also possible. If keyword test cases are automated, each keyword is implemented by keyword
execution code. Keyword execution code is specific to the chosen tool or test execution engine, and will
additionally depend on the test interface. For the manual approach, the action described by a keyword is
executed manually, so there is no keyword execution code. That is why in Figure 1 the relationship between
keyword and keyword execution code is 1 to 0..1.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

7

Test automation is typically highly technical and tool dependent since it depends on the test interface and on
the capabilities of the available tools. In general, keywords can be independent of the test interface (e.g. user
interface) and the tools used to execute the test cases.

In this context, automated test scripts may either be generated automatically by a framework or developed
manually by a test automation specialist. Automated test scripts are typically developed by testers with
programming experience.

NOTE 4 When developing automated test scripts, it is beneficial to align the structure (e.g. levels) of the keywords with
the implementation of the automated test scripts.

If a keyword test case or a set of keyword test cases is automated, the framework for Keyword-Driven Testing
generates the automated test script based on the keyword execution code.

NOTE 5 A framework for Keyword-Driven Testing does not necessarily "generate" code. The required code can also
be prepared by testers and be executed by the framework.

5.2 Layers in Keyword-Driven Testing

5.2.1 Overview

Keywords can represent actions at different abstraction levels. For example, one keyword can refer to a very
complex set of activities, like the creation of a contract, which includes a lot of steps, while another keyword
can refer to a very simple action, like pressing a button on a graphical user interface. The first keyword is
close to the business and end user domain, while the second is closer to the test interface. Keywords that are
written at a similar level of detail, and have a similar relationship to the stakeholder's view, are said to belong
to the same abstraction layer.

Keyword-Driven Testing can be organized by using one or more layers. Typical layers are the end user
domain layer and the test interface layer.

While many implementations of Keyword-Driven Testing will comprise two or three abstraction layers, in some
cases it may be necessary to structure keywords in more layers.

The topmost layer is the most abstract layer, which is generally aligned with the wording of the application's
users. In practice, the topmost layer is usually the domain layer. However, in some situations the domain layer
may not be required, and another, more abstract layer is used (e.g. if the test cases are supposed to span
several different end user domains, a meta domain layer can be introduced).

The lowest layer is the most detailed layer. It is commonly aligned with the names of test interface elements
(e.g. "selectMenuItem"). In practice, this layer is usually, but not always, the test interface layer (e.g. as
sometimes a test interface layer is not required, or for specific reasons, even more detailed layers may be
used).

Most Keyword-Driven Test systems will have more than one layer due to factors such as having
understandable keyword test cases, maintainability and division of work relying on a multi-layer structure. If
only one layer is implemented, it will commonly be either at a low level, which affects the readability of the
keyword test cases, or at a high level, which can result in more keyword execution code.

In Figure 2, an example is given, showing how test cases for two different test interfaces can be structured by
using two layers of keywords.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

8 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Figure 2 — Example for defining test cases by keywords at several layers

EXAMPLE In Figure 2, two test cases are shown which are designed using a domain layer and a test interface layer.
One of the examples sketches a test case for a GUI application, the other for a camera API. In both examples, the
implementation of the test cases in respect to test automation is done on the test interface layer. From top to bottom, the
example shows a test case for each test item, shows how one of the used composite keywords on the domain layer for
both test items could be structured, and gives an idea of how the implementation of one of the basic keywords on the test
interface layer for each test item could look.

5.2.2 Domain layer

Keywords in the domain layer correspond to business or domain related activities and reflect the terminology
used by domain experts. Because of this, it can be easier for testers at the domain or business level to create
test cases.

Keywords developed for the domain layer are generally implementation-independent; that is, the keywords
define tests that work regardless of the technology used to implement the test item.

EXAMPLE 1 Consider a keyword test developed to test a word processing application. Domain layer keywords
correspond to the activities that are part of the “business of word processing”:

StartApplication <app_name>

ClearBuffer

EnterText “Hello World!”

ReplaceText “Hello”, “Goodbye”, “ALL_OCCURRENCES”

VerifyText “Goodbye World!”

StopApplication

This test is valid for any text editor application that provides a global replace function, (e.g. Notepad, MSWord, Notepad++,
GED, EMACS, etc.).

EXAMPLE 2 Frequently used domain layer keywords are "Login" and "CreateAccount"

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

9

Tests constructed using domain layer keywords are relatively immune to changes in the implementation of the
test item, and can prevent expensive rework over the lifetime of the test item.

NOTE Extensive changes to the application, (e.g. changes in the workflow) can require test cases to be reworked.

5.2.3 Test interface layer

Keywords at the test interface layer refer to a specific type of test interface, (e.g. the graphical user interface
(GUI)). The actions needed to address the test items can usually be easily identified. The total number of
keywords is typically smaller than at the domain layer, since the test interface is limited.

EXAMPLE 1 A GUI can be used as the test interface. As the GUI controls (along with the associated actions) are
mapped to a fixed set of keywords, a small number of keywords is needed. In the same case the domain-related keywords
can be very versatile, and may need to be extended according to the needs of the tester, which leads to a much bigger
number of keywords.

If automation is desired, the keyword execution code for keywords at the test interface layer is often simpler.
However, for a keyword test case composed from keywords at the test interface layer, it may be difficult to see
how the interface layer keywords are related to the business domain.

Interface layer keywords usually reflect the underlying implementation technology for the interaction with the
test item. For example, keywords such as MenuSelect and PressButton reflect a GUI operation. Using the
example above, they would not be applicable to text editors using a command line interface, such as vi,
because they correspond to window-based operations.

EXAMPLE 2 Consider a test interface that is a graphical user interface. Keywords are chosen to cover single actions
such as "Click" or "Select". These keywords are applied to different elements like lists, grids, or images, and the specific
element can be selected by using the keyword with a parameter (See 5.4 Keywords and Data). Some combinations of
actions and elements can be excluded.

5.2.4 Multiple layers

To combine the advantages of several layers (e.g. domain layer and test interface layer), a framework is
required, which can help manage hierarchical keywords (see section 7 for details about testing frameworks).
This way a high-level keyword at the business level (e.g. domain layer keyword), can be built from several
lower level keywords at a more technical level (e.g. test interface layer keywords).

Figure 3 illustrates how multiple layers can be used in Keyword-Driven Testing.

In complex settings, three or more layers of keywords are necessary. In the figure, additional intermediate
layers are represented by three dots "…".

Using multiple layers requires composite keywords (see 5.3.2 Composite keywords).

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

10 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Figure 3 — Multiple layers in Keyword-Driven Testing

NOTE 1 Figure 3 explicitly shows two keyword layers – a domain layer and a test interface layer – and indicates that in
between there may be intermediate layers. It is possible, and can be sufficient, to organize keywords in only one layer.
However, there might also be situations in which more than two layers are needed.

NOTE 2 In Figure 3, the domain layer keywords are taken from the domain of an ATM test, and are meant to be used
to create test cases. The keywords from the test interface layer refer to simple actions that can be applied to the test
interface. The keyword "verify_cash" in this example is related to the test interface, and is supposed to cover only one
small activity, and used as part of domain layer keywords. In another example it could be designed differently, cover
several actions, and then be part of the domain layer.

5.3 Types of keywords

5.3.1 Simple keywords

Simple keywords, which are often used at the test interface layer (e.g. "MenuSelect" or "PressButton"), can be
the connection between the test execution tool and higher level keywords at an intermediate layer or domain
layer.

Using only keywords at the test interface layer can be sufficient for the definition of test cases and their
execution. Exclusive use of simple keywords will lead to test cases with many actions.

Depending on the test item, keywords at the test interface layer could need to interact with different systems
such as databases, the system registry or SOA-Messages. This challenge would normally be supported by
the automation framework by providing a predefined set of keywords in order to make the technical
environment as clear as possible.

In a similar way, the automation framework will support access to the test interface or other interfaces on
which the keyword operates (e.g. mouse, keyboard, and touch screen).

Depending on the test interface, it can be possible to operate with a very limited number of simple keywords.
A limited vocabulary of keywords is beneficial for composing test cases, since they are easier to remember,
use and maintain. If test automation is required, a very limited number of keywords may result in an increased

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

11

effort to implement the keyword execution code. This is because if a small number of keywords still has to
cover the same complexity, an individual keyword needs to be more flexible or powerful.

EXAMPLE An implementation is structured by the required actions such as "select". That particular action is only
implemented once due to an objective to have a small number of keywords, In this case, the single keyword "select"
needs to address several types of interface elements, such as for a GUI, lists, tables and radio buttons. The keyword
"select" will for that reason be associated with a complex implementation.

5.3.2 Composite keywords

Simple keywords are sufficient to compose and execute test cases but are often insufficient to reflect
functional features.

Composite keywords are keywords composed from other keywords. This means that keywords can be
organized in different layers (see 5.2). For composite keywords, composite parameters (e.g. a data structure)
can be required.

It is often useful to use business-level keywords, such as “login user“. This keyword may be composed of a
sequence of lower level keywords, such as “enter username“, “enter password“ and "push login-button“. For
more complex business objects, such as large forms for the preparation of contracts, a keyword like
“filloutContractformPage1” can be valuable.

EXAMPLE 1 It is common to use composite keywords for verification, (e.g. retrieve a value from the application,
compare it with an expected result, and log the result of the comparison in the test execution log).

It is also possible to define a keyword at a higher level (e.g. domain level) with a single keyword at a lower
level (e.g. test interface level) to express a different semantic meaning.

EXAMPLE 2 For navigation purposes, a high-level keyword "GoToResultsScreen" is defined by the lower level
keyword “Click ResultsButton”

It is also possible to combine several basic keywords to create a complex operation with a higher level of
functionality, such as "CreateCustomerAccount", which may include a large number of basic steps.

A composite keyword is a ‘package’ containing a sequence of other keywords. The set of parameters for a
composite keyword can be the union of the set of parameters of the keywords that comprise the composite
keyword; sometimes however, the implementer of a composite keyword may choose to ‘hide’ one or more
parameters by assigning it a literal value within the composite. This is done in the example in Figure 4. The
interface layer keyword "Enter_value" has two parameters: the id of the referenced object and the value that is
to be inserted. Only the value (e.g. username) is visible on the top layer keyword "login", while the id is hidden
from a tester, who only used the composite keyword. This is especially useful if the detailed technical
information is irrelevant to the person who designs test cases and operates at the domain layer.

EXAMPLE 3 Figure 4 illustrates how a keyword for a login procedure can be designed as a composite keyword in
three layers. At the domain layer, this keyword can be used, (e.g. 'Login ("John","secret")'). This keyword is composed of
three keywords at the intermediate layer, "Set_User", "Set_Pwd" and "Close_Login". "Set_User" and "Set_Pwd" both use
one of the parameters of the higher layer keyword "Login", while the keyword "Close_Login" requires no parameters or
data at all. At the third layer (the interface layer), the basic keywords "Set_context", "Enter_value" and "Select" are used.
On this third layer, literal values are used, such as "Login_Window", which has not been provided with the domain layer
keyword but will be used the same way every time one of the intermediate layer keywords is used.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

12 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Figure 4 — Example for using composite keywords with data

The following figure explains the relationship between different types of keywords, keyword test cases and the
level of keywords that are eventually applied to the test item. The keyword can be low-level, high-level or a
composite keyword (Figure 5).

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

13

Figure 5 — Keyword test cases composed from keywords at different levels

If composite keywords are not used, keyword test cases can be built from low-level keywords, such as from
the test interface layer. Through this approach, testing of the test item will be accomplished by using low-level
keywords.

NOTE 1 In figure 5, the composite keyword can be either a low-level keyword, or a high-level keyword.

Consequently, the test cases will be understandable for human testers and machine readable test execution
engines. On the other hand, when reading such test cases, it can be hard to recognize the use case or
business case addressed by the test case.

By exclusively using high-level keywords, such as business keywords or domain keywords, the derived
keyword test cases will generally be more understandable in respect to the addressed use cases or test cases.
Testing of the test item will be accomplished by using high-level keywords. Thus human testers need more
information about the detailed steps needed to execute the more abstract keywords, especially if they are not
familiar with the business domain. If execution engines are used, these execution engines need more
information about the detailed steps needed to execute the more abstract keywords as well.

After combining low-level keywords to form composite keywords at a higher level (e.g. combining keywords
from the test interface layers with composite keywords at the domain layer) the keyword test case can be
composed from these high-level keywords. Such test cases are very easy to understand, as they resemble
the related use cases or business cases.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

14 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

NOTE 2 Figure 5 shows, for composite keywords, two levels of keywords: composite high-level keywords, and low-
level keywords. It is possible to have more levels, such as intermediate composite keywords, which are composed of
lower level keywords and are used to compose higher level keywords.

To execute the tests, the high-level keywords can be decomposed into low-level keywords, usually using a
framework (see 7.2). So testing of the test item will be accomplished by only using low-level keywords, which
makes it easy for human testers or test execution engines to identify the necessary actions to perform the test
since they will have simple steps to follow.

NOTE 3 Mixing keywords from different layers and using them in one keyword test case is possible, but not
recommended, as it may be the source of maintenance problems.

5.3.3 Navigation/interaction (input) and verification (output)

Keywords may be classified into at least two categories: navigation steps (i.e. input to the test item) and
verification steps (i.e. output from test item).

Most keywords belong to the first category, (i.e. the navigation steps) because most actions are needed to
prepare the test item or perform certain actions on it which will lead to a result. Navigation steps usually are
steps that do not verify and log the test result.

The result is then checked by one or more other actions i.e. the verification steps.

The verification steps are related to the result of the test case. For example, if the condition of a verification
step is not met, then the test result will be set to "failed".

It may be useful to allow navigation steps to be used for verification.

EXAMPLE 1 A navigation step "AddUser" is required to prepare data for a test case. In some cases it may be used in a
context where the addition of a user is supposed to succeed, in other cases it can be used in a situation where the
addition is expected to fail. Thus, the keyword can verify whether it successfully creates a user, without marking the test
case as "failed". However, the test designer can also decide to mark a test case as "failed" due to the failed execution of
that navigation step, although the actual intent of the test case is to verify a result which appears later in the process.

See reasons for tests failing in subclause 5.3.4 Keywords and test results.

Keywords will typically be semantically independent from each other. Therefore, if a keyword is meant to
trigger an expected result, the verification of this expected result will be part of the same keyword and not in
another keyword.

EXAMPLE 2 Pairs of keywords like "Open the dialog" – "Verify the dialog is opened" are normally avoided when the
second keyword is exclusively used following the first one.

5.3.4 Keywords and test result

Keywords can be used to determine the test status and to capture test results. This can include the following:

 Test output

 Conformance to success criteria

 Test execution log files

 Hardware outputs

 System status

 Test failure(s)

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

15

There are different reasons why a test execution can fail that can include the following:

 the conducted checks in the test case reveal a mismatch between actual outputs and expected outputs,
which might indicate a software failure;

 some steps in the test case cannot be executed, because test execution is blocked.

NOTE Blocked test cases include test cases that cannot be executed due to faults in keywords, keyword execution
code or the test environment.

It is useful to recognize the cause of a failed execution at first glance without having to analyse the cause in
detail. Thus the framework will set different test results (e.g. failed and/or blocked) accordingly.

The result of an individual keyword execution will normally impact the test result, but that impact depends on
the context.

EXAMPLE A keyword is defined to enter text into an edit field. The keyword works the same but the results are
interpreted differently depending on context. If the text field is expected to be active and text entered successfully then the
test result is set to passed. Conversely, if no text is entered to an active field, the test result is set to failed. On the other
hand, if the text field is expected to be inactive and text entered successfully the result is set to failed, whereas if text
cannot be entered the test result is set to passed.

The test framework can be designed to handle blocked keywords on the test item. Keywords can then be
optionally marked either as “may be blocked” or as “must not be blocked”. In the first case, a blocking
(unsuccessful execution) of the keyword would not affect the test result; in the second case, the test result will
be affected. A keyword can be marked either globally (the property is default for all applications in test cases)
or overridden when it is used in a test case.

The test framework can additionally provide an error recognition mechanism that can take care of errors
returned by a keyword. Failures can be logged and described as clearly as possible in order to simplify the
correction of errors in the automation framework and investigate its cause, which may be a software-defect.

5.4 Keywords and Data

Keyword-Driven Testing can be enhanced if keywords are associated with data. To allow an association with
data, in many cases keywords will need to have parameters which may be fixed, or list driven.

Most keywords will need to have at least one parameter to specify the object they apply to. Some will need
another parameter to specify input, (e.g., true/false, a string to type, an option to select in a combo box). This
input will generally depend on the type of control and the type of action.

NOTE In the cases where a keyword represents a verification step, the required input for the keyword could be the
expected output or a state for the referenced object.

Some keywords may also accept a number of optional inputs; in such cases, the framework needs to hold
default values for those that are not provided (e.g. “Click UI_Element 456,123” may refer to a specific co-
ordinate in the UI_Element, while “Click UI_Element” with no specified co-ordinate may default to clicking the
center of that element).

For composite keywords, which can cover extensive functionality, the number of parameters can grow and the
test data can become complex. It is a good practice to decouple the data from the actions. Therefore, multiple
parameters can be stored separately and a unique reference to the data is used as input for the keyword.

EXAMPLE A composite keyword "createCustomer" requires data such as first name, surname and address of the
customer. Instead of documenting the test data with the keyword test case, it is stored in a database. This allows a single
reference to the complex data in the database, and the test case can be extended by providing several sets of data which
are associated with the same sequence of actions.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

16 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Data-driven testing is a method of storing test data separately from the sequence of actions, which is
independent of Keyword-Driven Testing, but is frequently used in conjunction with Keyword-Driven Testing. In
data-driven testing, for one test case with a defined sequence of actions, multiple sets of data can be provided.
The sequence of actions is then executed for each of the sets of data. Depending on the implementation, the
data is either stored in a table, spreadsheet or database. Data-driven testing is an option to decouple the
parameters from the test which matches very well with the concepts of Keyword-Driven Testing.

See subclause 6.4 Keywords and data-driven testing.

6 Application of Keyword-Driven Testing

6.1 Overview

This section addresses some concepts which contribute to a successful implementation of Keyword-Driven
Testing. While all of these concepts are not required for each keyword test case, test design will benefit from
them.

There are six concepts covered in this section.

a) "Identifying keywords" in 6.2;

b) "Composing test cases" in 6.3;

c) "Keywords and data-driven testing" in 6.4;

d) "Modularity and refactoring" in 6.5;

e) "Keyword-Driven Testing in the Test Design Process" in 6.6; and

f) "Converting non keyword-driven test cases into Keyword-Driven Testing" in 6.7.

6.2 Identifying keywords

Identifying Keywords is a pivotal task in Keyword-Driven Testing as the contents, granularity and structure of
the keywords can impact the way keyword test cases are defined. It is important to name keywords in a way
that appears natural to the people who will be working with them.

When identifying keywords, the following steps are executed:

a) determine the layers needed in the given context and define what sort of keywords (e.g. functionality,
granularity) are supposed to be assigned to the layers;

b) identify keywords in the layer based on the definition or scope of each layer.

Generally, keywords are defined by first identifying sets of actions that are expected to occur frequently in the
testing. A name (e.g. the keyword) is applied to an action or group of actions. Keywords are applicable in a
range of situations. At this point it is useful to determine which of the actions are information-dependent (e.g.,
time, data, situation, etc.), and so identify which keywords need to be associated with parameters.

A keyword is described by the following information:

 The name of the keyword. It tells the reader what this keyword is expected to do.

 The parameters of the keyword, which can be empty.

 Documentation on the keyword, including the layer in which this keyword is expected to be used, the
keyword type (e.g. navigation or verification), the context in which it is to be used, the actions included

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

17

with the keyword, either as a description, or as a reference to keywords on a lower layer (see next bullet),
and the objectives of the keyword.

 If the keyword is composed from other keywords, a list of the included keywords in the order in which they
are used.

Basic Keywords can be identified by observing different interactions available at the test input interface, such
as interactions with keyboard, mouse, touchscreen, microphone, API, etc.

Composite keywords can be identified by observing common actions that the user will perform at the UI level.

EXAMPLE "GoTo" would be used instead of "ClickButton", or "Select" instead of "ClickRowInTable".

Typical business behaviour can be encapsulated in a composite keyword (e.g. "CreateNewUser"). Other
complex manipulations like interactions with databases can also be candidate keywords in the framework.

The following issues should be considered:

 Uniqueness: each keyword should be unique in its context of use.

 Reusability: the keywords should be defined in a way that best supports future reusability.

 Completeness: keywords should be defined with a view to all known elements and possible interactions
of the test interface (e.g. all known objects in the GUI and its dialogs).

 Clarity: all keywords should be defined with a clear and consistent structure.

NOTE 1 All keywords in a layer should have a similar abstraction level.

 Specificity: keywords should not be redundant and should be mutually exclusive (i.e. keywords will
represent distinct actions), to ease the test design and to decrease the maintenance effort.

NOTE 2 In some environments it can be useful to use an object-oriented approach to identify and describe keywords.
Keywords can, in that approach, be identified by analysing the available objects and methods on the objects in the domain.
Keywords can then be described in a style like "OBJ.Action Parameter", where "OBJ" refers to the object which is to be
addressed (e.g. a button in a user dialogue box), "Action" refers to the activity (e.g. "press" for a button), and "parameter"
refers to a list of additionally-needed parameters. This approach can be useful if all stakeholders performing Keyword-
Driven Testing within that environment are familiar with object-orientation.

6.3 Composing test cases

Keyword test cases can be composed from previously-defined keywords. In the process of writing test cases,
it can occur that missing keywords are discovered and can, therefore, be defined after that point.

NOTE Keyword test cases can be composed from composite keywords and used to build end-to-end tests.

Within the test case specification (see ISO/IEC/IEEE 29119-3), test cases can be documented using
appropriate notation, including the use of tables or databases. The format depends on the available
infrastructure (e.g. availability of a test management tool and the plans for automated execution).

Keyword test cases usually contain keywords from a single layer. A clear distinction is made between the
layers. This distinction opens the option to distribute the design of different layers to different testers (see 7).

EXAMPLE 1 Test of an ATM using only basic keywords at the test interface layer:

enterValue("Card", 123000789)

enterValue(“PIN”, 1234)

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

18 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

selectObject("Button", "OK")

selectObject(“Button”, “Payment”)

enterValue(“Amount”, “200”)

selectObject(“Button”, “executePayment”)

verifyObject(“Payment”, ”200”)

EXAMPLE 2 Test of an ATM using domain layer keywords:

signInUser(123000789, 1234)

executePayment(“200”)

verifyPayment(“200”)

More examples can be found in Annex F.

6.4 Keywords and data-driven testing

Keywords combined with parameters and separate data sets for these parameters (e.g. data-driven) may offer
improved testing. Data-driven testing can be applied when the same sequence of keyword actions are to be
used with different sets of data. In this combined approach, the data can be stored separately from the
keyword test cases. The data can be stored in constructs such as tables, databases, or real-time generators,
and is then read into the keyword test cases. The repeated keyword sequence using different data, in effect,
creates new tests.

EXAMPLE Data-driven testing is useful for multi-lingual testing or internationalization testing, where the same test
cases are to be performed at user interfaces but with different languages. It should be kept in mind that not all
internationalization issues are easily addressed by data-driven testing: in the case of lexicographical sorting, the requested
item may have not only have a different label but also a different position.

The following guidelines are taken into consideration for data-driven testing with keywords:

 A keyword does not have to be “loop aware”. In other words, a keyword will ideally work the same
whether it is part of a linear sequence or is contained within a loop (such as in a data-driven test). This
places the burden of managing the data file and fetching its content on the framework, not on the keyword.
It implies that the only method of getting data into and out of a keyword is through its parameters.

 Multiple, non-nested loops in a test case, can be implemented, but are discouraged. Good data-driven
test design suggests the use of a single loop in test cases that are data-driven.

 Nested data-driven loops are discouraged. Nesting data-driven loops by more than two is normally
avoided.

 The format of the data file and its contents are implementation defined. This standard does not dictate the
format of the file (e.g. an implementation can support data from Excel files, text files, or any other file
type). Neither does this standard dictate the format of the data items within the file (e.g. XML, ASCII or
Unicode text, binary encoding, or any other format is permitted).

NOTE Although Keyword-Driven Testing and data-driven testing are concepts that can be used independently in
theory, in practice Keyword-Driven Testing includes data-driven testing.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

19

6.5 Modularity and refactoring

Modularity in Keyword-Driven Testing is used to improve the longevity of the test cases. However, with the
passage of time, changes in the test item, new test cases or new people on the team can all lead to
maintenance issues.

Possible issues are as follows:

 Redundant keywords: where two or more keywords for the same objective come into existence.

 Unused keywords.

 Conflicts where changes in keywords (e.g. structure or semantic), which fix an issue in a number of test
cases, create new issues in other test cases. This has associated cost factors.

 Uncoordinated changes in keywords (e.g. name, semantics, parameters) cause rework or invalidate test
cases of other testers.

To avoid these issues, the following maintenance actions should be considered:

 A framework for Keyword-Driven Testing should provide a way of creating a cross-reference for the used
keywords, allowing identification of which keywords are used in which places and how frequently they are
used. This shows if, and how much, a change in a keyword will affect existing test cases.

 In some organizations, an authority is required who is responsible for all keywords, additions and any
changes to existing keywords or how they are used. That authority assures consistency throughout the
project including both development and testing stages.

 On a regular basis (e.g. once a month), a keyword review meeting can be held. At this meeting, testers
can decide about the introduction or modification of keywords and discuss the structure of the keywords.
If an authority is in charge of keywords, they should also be in attendance.

 A clear structure to document the keywords should be produced. Keywords can be grouped by layer, test
item and region in the test item (e.g. dialog, objective or others). Keywords that are supposed to be
usable by all testers will normally be stored separately from keywords which are only useful for a limited
number of people.

 Keywords can be subjected to configuration management practices (e.g. the authority mentioned above).
The ability to change keywords would normally be limited to those who need to do changes or the
authority. All changes need to be well documented. Access to prior versions (e.g. the option for rolling
back) should also be provided.

6.6 Keyword-Driven Testing in the Test Design Process

6.6.1 Overview

The Test Design and Implementation Process defined in ISO/IEC/IEEE 29119-2 (see figure 6) is applicable to
this standard. This clause describes the relationship between the activities of this process and Keyword-
Driven Testing.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

20 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Figure 6 — ISO/IEC/IEEE 29119-2 Test Design & Implementation Process

The Test Design and Implementation Process in subclause 8.2.1 ISO/IEC/IEEE 29119-2 (figure 6) describes
six steps from ‘Identify Feature Sets’ (TD1) to ‘Derive Test Procedures’ (TD6).

The requirements of TD4 to TD6 in ISO/IEC/IEEE 29119-2 are most applicable to the Test Design &
Implementation Process used in Keyword-Driven Testing.

TD1 to TD3 are not addressed in ISO/IEC/IEEE 29119-5. Keyword-Driven Testing is relevant when
performing the activities TD4 – ‘Derive Test Cases’, TD5 – ‘Assemble Test Sets’ and TD6 – ‘Derive Test
Procedures’. These will be covered in the following subclauses.

6.6.2 TD1 Identify Feature Sets

TD1 can be applied in Keyword-Driven Testing as defined in ISO/IEC/IEEE 29119-2 and is not covered here.

6.6.3 TD2 Derive Test Conditions

TD2 can be applied in Keyword-Driven Testing as defined in ISO/IEC/IEEE 29119-2 and is not covered here.

6.6.4 TD3 Derive Test Coverage Items

TD3 can be applied in Keyword-Driven Testing as defined in ISO/IEC/IEEE 29119-2 and is not covered here.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

21

6.6.5 TD4 Derive Test Cases

6.6.5.1 Overview

In TD4, Keyword-Driven Testing is focused on composing keyword test cases of simple keywords or
composite keywords.

A keyword test case is implemented using keywords. Keywords that support the needed test cases will have
been defined prior to TD4. It is possible that new keywords may be identified during the performance of TD4
tasks and in this case iterations of TD4 are likely to be required.

According to ISO/IEC/IEEE 29119-2, test cases are derived by the following steps (TD4 task a):

 Determine pre-conditions

 Select input values

 Select actions (to exercise test coverage items)

 Determine expected results

These design activities identify the different actions that need to be performed to prepare the system for the
test, execute the test and verify the test results. Keywords may fulfil one or more of these actions.

Examples of keyword-driven test cases can be found in Annex F.

6.6.5.2 Determine pre-conditions

The tester determines and establishes the needed test pre-conditions and identifies which can be achieved
using keywords or other actions. Composite high-level keywords (see 5.3.2) can be appropriate in a situation
where multiple actions are required. Additionally in some testing, keywords can be used to prepare system
conditions before establishing specific test case pre-conditions (e.g. importing data into a database or setting
parameters for application start which can be used over a series of test cases).

6.6.5.3 Select input values

The tester selects input values based on test design considerations and then implements these in keywords.
In situations where test cases are supposed to be executed according to the same actions, but with different
sets of data to provide different test outcomes, the keywords will normally be developed to support data-driven
testing (see 5.6).

6.6.5.4 Select actions

The tester identifies those actions required to exercise the test coverage items. If the required actions are not
available from existing keywords, new keywords may be needed or existing keywords can be combined into
composite keywords, as appropriate, to provide the needed functionality. Such changes may require iteration
on this effort.

NOTE As keywords will sometimes already be defined, the iterative nature of the Test Design and Implementation
Process suggests that keywords can be subject to refactoring.

6.6.5.5 Determine expected results

The tester will determine expected results and implement checks or feedback on results using keywords.
Keywords can be used to check the results the test item returns and log them accordingly (see 5.3.3
and 5.3.4).

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

22 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

6.6.6 TD5 Assemble Test Sets

Test sets can be formed from keyword test cases (TD5 tasks a and b).

A framework for Keyword-Driven Testing can provide mechanisms for assembling test sets from various test
cases (see 29119-2) by applying different criteria (e.g. the same test environment set-up, or keywords with
data-driven testing).

6.6.7 TD6 Derive Test Procedures

The developed keyword test cases and test sets become the primary input for deriving test procedures as the
keywords are easily read and understood (TD6 tasks a and d).

Additionally, a keyword framework can provide mechanisms to determine the execution order within test sets
and across test sets, thus generating the basic structure of a test procedure. The framework can also be
designed to ensure that required pre-conditions are set up before test execution. This may require additional
generic keywords.

6.7 Converting non keyword-driven test cases into Keyword-Driven Testing

If Keyword-Driven Testing is to be introduced into an existing project, existing test cases can be converted into
keyword test cases.

In addition to the advantages of Keyword-Driven Testing, reasons for deciding to convert existing test cases
into Keyword-Driven test cases include the following:

a) Uniformity: ensuring that all test cases have a similar structure and style will enhance readability,
maintainability and so reduce costs. Future maintenance may be cheaper if only one style of test case is
to be maintained.

b) Efficiency: keywords identified from existing test cases may be reusable in future test cases.

c) Automation: the same automation framework may be used for old and new test cases.

d) Understandability: test cases may be used and maintained by non-technical testers (often with business
knowledge).

Reasons to keep existing test cases and not convert them into Keyword-Driven test cases include the
following:

 The number of existing test cases is large compared with the number of additional test cases that are
needed.

 There is proven and maintainable automation for the existing test cases.

 The cost of converting the test cases is expected to exceed the benefits.

The decision to move to Keyword-Driven Testing for existing projects should be carefully considered.

7 Keyword-Driven Testing Frameworks

7.1 Overview

If Keyword-Driven Testing is to be applied, everything necessary to do that needs to be organized in a
Keyword-Driven Testing framework. This framework consists of concepts, documents and tools. The
framework can have more or less complexity depending on its purpose.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

23

The components of a framework are described in 7.2.

This subclause addresses several points to consider when implementing or using frameworks for Keyword-
Driven Testing.

The following subclauses describe attributes for Keyword-Driven Testing frameworks:

 Basic attributes that are necessary to implement Keyword-Driven Testing (see 7.3).

 Advanced attributes providing additional value and are desirable, but are not expected to be available in
all frameworks (see 7.4).

The attributes are divided into general, test design tool, and test execution engine aspects as follows:

 General aspects are mostly tool-independent.

 Test design tool aspects are related to a software tool component of the framework that is used to
manage keywords, compose test cases from keywords, and assign data.

 Test execution engine aspects are related to a software tool component of the framework which is used
to execute the test cases as automated tests.

A framework will likely be composed of a series of tools each providing parts of the needed capabilities. The
framework as a whole needs to meet the named requirements.

7.2 Components of a Keyword-Driven Testing framework

7.2.1 Overview

Keyword-Driven Testing is typically supported by a framework. The framework can be realized in a variety of
ways including by commercial tools, custom tools, and solutions in the form of script libraries or other
supporting elements.

A Keyword-Driven Testing framework will comprise functional units (or functional areas) which are shown in
figure 7. This standard does not describe how these functional units are to be implemented. In practice, a
commercial or custom software tool can cover these functional units in parts or completely. One or more
software tools, along with custom implementations, libraries and organizational processes can form a
Keyword-Driven Testing framework. Tools may have a different overall organisation. A framework needs to
cover the requirements described in subclauses 7.3 to be compliant with this International Standard (see 2).

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

24 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Figure 7 — Components of a Keyword-Driven Testing framework for manual test execution

In Figure 7, a Keyword-Driven Test framework is shown that is restricted to the support of manual testing. If
test automation is required, the framework would be comprised of additional elements, as shown in figure 8. A
manual test assistant is not required. Instead, an execution engine is used to run the test cases against the
subject under test (SUT). A tool bridge is used as a link between the keywords and their representation in the
automated test execution environment. The tool bridge's main task is to transform the necessary information
into a suitable format for the execution engine.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

25

Figure 8 — Components of a Keyword-Driven Testing framework for automated test execution

The functional components which form a Keyword-Driven Testing framework are explained in the following
subclauses.

NOTE These component descriptions do not assume any specific implementation of the components. In practice,
one specific tool can cover some of these components (e.g. Keyword-driven Editor, Decomposer, Data Sequencer and
Manual Test Assistant might be included seamlessly in one test management tool). Other implementations may provide
only parts of one of the components in one tool.

7.2.2 Keyword-driven Editor

The Keyword-driven Editor is required to compose keyword test cases from keywords. The keywords can be
taken from a keyword library (7.2.8).

In practice, the Keyword-driven Editor can be implemented in various ways.

EXAMPLE Possible implementations of a Keyword-driven Editor include, but are not limited to, a spreadsheet
application, a dedicated standalone application or can be part of a test management tool.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

26 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

7.2.3 Decomposer

The decomposer is required if composite keywords are used. The main task of the decomposer is to transform
the keyword test case, which consists of a sequence of high-level keywords, into the appropriate sequence of
low-level keywords.

7.2.4 Data sequencer

The data sequencer is required if Keyword-Driven Testing is to be applied with several sets of data associated
with one keyword test case. The main task of the data sequencer is to transform the sequence of keywords
(e.g. low-level or high-level) which are not yet associated with data to a list of keywords with specific data.

By doing this, the original list of actions, which has been written only once in the Keyword-driven Editor, will be
repeated for any desired set of data. All parameters or placeholders are replaced by the final value needed in
the respective test case.

The data sequencer can work both on high- and low-level keywords.

NOTE Depending on the implementation, the tasks of the decomposer and the data sequencer can be performed in
arbitrary order. Both tasks can be done by the same software implementation.

7.2.5 Manual test assistant

The manual test assistant is only required for manual test execution. Its task is to present the test cases as
prepared by the decomposer and data sequencer in an actionable way to the human tester. The tester then
performs every single action, as well as documenting the test execution and the results.

In practice, the manual test assistant is frequently part of a test management tool.

7.2.6 Tool bridge

The tool bridge is only required for automated test execution and has a similar function to the manual test
assistant used to support manual test execution.

The task of the tool bridge is to provide a connection between the keywords, as they appear in the keyword
test case or in the keyword library, and the associated implementation in the test execution environment.

For each keyword passed from the data sequencer or from the decomposer, the tool bridge will, depending on
the implementation, request the test execution engine to call the proper script (e.g. keyword execution code),
functions, and perform the right actions with the appropriate data, if applicable.

In practice, a tool bridge can be implemented as a separate software tool, as a script in a test automation
tool's runtime environment, or as part of a test management tool. Some bridge implementations may be
referred to as a "generator," for example when a script or parts of scripts are generated for execution by an
automation tool. Additionally, a bridge may be called an "interpreter" or "engine", for example, when a script is
executed to interpret the sequence of keywords and calls the corresponding sub-functions.

7.2.7 Test execution environment and execution engine

To support automated Keyword-Driven Testing, the test environment will contain an execution engine with
links to the item under test. The execution engine is a tool implemented either by software, hardware or both.
Its task is to execute the test cases by performing the actions associated with the keywords.

In practice, the implementation of a test execution engine varies depending on the test object and
environment. The execution engine can be a commercial test execution tool, (e.g. a capture and playback tool,
or it can also be a hardware appliance, controlled by software, such as a robot).

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

27

7.2.8 Keyword library

The keyword library stores keyword definitions for one or more projects or portions of those projects. It is used
to store the core information on keywords, such as: name, description, parameters and, in the case of
composite keywords, the list of keywords from which the respective keyword is composed or derived. For test
automation, it also contains necessary information for the tool bridge to associate the Keywords with the
keyword execution code. The keyword library can help the tester to find a keyword.

In practice, a keyword library is supported by a test management tool.

7.2.9 Data

The data element in the Keyword-Driven Testing framework refers to the test data used for the keyword test
cases.

Keyword test cases can be designed so the test data is included in the test cases. In this case, external test
data is not be required. In other implementations, the keyword test case does not contain actual data, but
contains placeholders which need to be substituted with data before the test case can be executed. In this
case, the test data needs to be stored. In practice, it is common to store that data in files, in a spreadsheet
application, in a dedicated database, or in a test management tool.

7.2.10 Script repository

The Script repository stores keyword execution code. It is only required if Keyword-Driven Testing is done with
the aim of executing the test cases automatically.

For automation of Keyword-Driven Testing, each keyword needs to be associated with at least one command,
test script or function, which implements the actions associated with that keyword. The script repository stores
the technical implementations of the keywords.

In practice, the script repository is frequently implemented by either a test automation tool or stored at a
defined location in the file system.

7.3 Basic attributes of the Keyword-Driven Testing framework

7.3.1 General information on basic attributes

This clause defines framework attributes that are generally necessary for the application of Keyword-Driven
Testing. It describes attributes which are required in Keyword-Driven Testing frameworks and are necessary
for compliance with this International Standard.

The following subclauses structure these attributes and requirements by the components of Keyword-Driven
Testing frameworks according to subclause 7.2.

NOTE Requirements concerning data interchange format are not discussed in the following subclauses, instead see
clause 8.

7.3.2 General attributes

General attributes that apply to Keyword-Driven Testing frameworks include the following:

a) There shall be documentation recorded describing each keyword.

NOTE 1 This is necessary for people to understand and use the defined keywords appropriately to build their test
cases. The description is improved by the inclusion of an example.

b) There shall be documentation recorded for the parameters of each keyword.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

28 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

NOTE 2 Keyword and parameter documentation includes naming of the keywords and how they are described, the
parameters' maximum length, allowed characters, optionally reserved names or characters, and documentation rules.

c) A default value shall be documented for every parameter in case a value for a parameter is missed in the
keyword test case definition.

d) There shall be high-level documentation recorded describing the hierarchy of the keywords that can be
used.

e) There shall be high-level documentation recorded describing how data is stored and referenced for data-
driven tests.

EXAMPLE Data could be stored in a database or in a spreadsheet, and could be organized in columns or rows

The documentation described above can be part of the Test Plan, Test Policy, Organizational Test Strategy
(see ISO/IEC/IEEE 29119-3) or a standalone document with references to/from other test documents.

There are several options of recording this information, such as word processors or test management tools.

7.3.3 Dedicated keyword-driven editor (tool)

When creating keyword test cases, it is recommended that a tool be used which supports the building of test
cases.

Requirements that apply to the dedicated Keyword-driven editor include the following:

a) Within the keyword-driven editor, non-composite keywords shall be displayed with their associated
actions.

EXAMPLE 1 A keyword "login" could be associated with the actions "press button >>login<<", "enter user name",
"enter password" and "press button >>submit<<".

NOTE 1 A keyword like "login" can be designed to be composite or non-composite. In this example it is assumed that
the tester has decided to define "login" as a non-composite keyword.

b) For keywords which have been defined with lower level keywords, the user shall be able to access this
definition within the keyword-driven editor.

c) The keyword-driven editor shall allow the use of keywords with parameters to support data-driven testing.

d) The keyword-driven editor shall provide the capability to enter comments.

e) The keyword-driven editor shall offer the capability to connect to data sources that are to be used to
assign values to parameters.

NOTE 2 Through this capability test cases become keyword-driven and data-driven. While it is possible to use
Keyword-Driven Testing without data-driven testing, in practice data-driven testing is so important for efficient Keyword-
Driven Testing that frameworks for Keyword-Driven Testing are expected to offer the option of data-driven testing.

EXAMPLE 2 A data source could be a database or a spreadsheet.

f) Within the keyword-driven editor, multiple uses of keywords shall be implemented by reference.

NOTE 3 Copying implementations of keywords can be avoided by using references.

g) The keyword-driven editor shall provide the capability to define the order in which the test cases are to be
executed.

NOTE 4 The test execution order is part of deriving test procedures.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

29

7.3.4 Decomposer and data sequencer

Requirements that apply to the decomposer and data sequencer include the following:

a) The decomposer shall be able to process parameters, including assuring that the parameters associated
with the higher level keywords are decomposed and associated with the lower-level keywords.

b) The data sequencer shall be able to process parameters.

7.3.5 Manual test assistant (tool)

Requirements that apply to the manual test assistant include the following:

a) The manual test assistant shall support manual test execution based on the defined test cases.

b) The manual test assistant shall provide support for tracking any defect associated with a test failure.

7.3.6 Tool bridge

Requirements that apply to a tool bridge include the following:

a) The tool bridge shall provide the test execution engine with the appropriate execution code to execute the
test cases.

7.3.7 Test execution engine

Test execution engines are designed to execute test cases by addressing one or more test interfaces (e.g. an
API, a GUI or a hardware interface). A test execution engine can be implemented by software, by hardware or
both. A common example of this class of tools is "JUnit".

Requirements that apply to the test execution engine include the following:

a) Keywords that do not express conditions or loops within a test case shall be executed sequentially
starting with the first keyword.

NOTE 1 This is in general; but exception handling can require non-sequential execution to process an abort.

b) The execution engine shall be able to identify unimplemented keywords.

NOTE 2 A keyword is unimplemented if there is no execution code for that keyword.

c) The execution engine shall provide support for both literal values and variables in parameters.

NOTE 3 Variable definition can be implemented by configuration files, or by other means.

d) The execution engine shall provide execution results at the keyword level for each execution of each
keyword implementation.

NOTE 4 By that, a user will be able to tell from the test results whether a keyword was executed successfully, or, if
execution of the keyword failed, why (e.g. text field not writeable, field not present, etc.).

e) The test execution engine shall be able to store the timestamp of its executions with the duration of its
execution.

f) The execution engine shall provide an error recognition mechanism as described in subclause 5.3.4.

NOTE 5 As a consequence, the execution engine either limits the number of cycles in a loop or provides another
means to make sure that unlimited loops are impossible (e.g. by terminating each loop after a predefined time).

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

30 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

g) The execution engine shall provide a clear definition of PASS/FAIL for a test case whenever there are
passed and failed executions in one loop.

NOTE 6 If a loop contains a verification, it could happen that the verification fails for some, but not all loop cycles. The
PASS/FAIL definition indicates if this situation will be either "PASS" or "FAIL" for the test case.

h) The execution engine shall include the unique identifier of the execution in the execution logs.

i) The execution engine shall include the unique identifier of the test environment in the execution logs.

j) The execution engine shall include the unique identifier of the test item in the execution logs.

k) The execution engine shall support multi-application keywords by providing a mechanism to select
between multiple implementations of a keyword.

NOTE 7 This allows a test case to manipulate more than one application using keywords written for each application.
For example, a test case that verifies interoperability of an office application suite should be able to use keywords written
for each of the two applications in a single test case.

l) The test results shall be available to the user.

NOTE 8 Other components include test design or test management components.

7.3.8 Keyword library

Requirements that apply to the keyword library include the following:

a) The keyword library shall support the definition of keywords that includes the basic attributes of name,
description and parameters.

7.3.9 Script repository

Requirements that apply to the script repository include the following:

a) The script repository shall support the storage of keyword execution code.

b) The script repository shall support the inclusion of references to allow keyword execution code to be
associated with its corresponding keyword in the keyword library.

7.4 Advanced attributes of frameworks

7.4.1 General information on advanced attributes

This subclause defines additional attributes that are recommended to achieve the full benefits of Keyword-
Driven Testing. Basic Keyword-Driven Testing is possible without these attributes. This subclause does not
identify requirements necessary for compliance with this International Standard.

The following sub-clauses structure these attributes in terms of the components of Keyword-Driven Testing
frameworks according to subclause 7.2.

7.4.2 General attributes

Keyword-Driven Testing frameworks should support documentation with the following information:

a) There should be high-level documentation recorded that describes the rules of how the keywords can be
composed into test cases.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

31

b) There should be high-level documentation recorded which describes the rules of how parameters are
described.

c) There should be high-level documentation recorded which describes the rules of how parameters are
passed.

d) There should be high-level documentation recorded describing how keywords are defined.

7.4.3 Dedicated keyword-driven editor (tool)

Recommendations that apply to the dedicated Keyword-driven editor include the following:

a) The Keyword-driven editor should provide a function for checking the syntax of the test cases composed
of the keywords.

b) The Keyword-driven editor should provide the capability to track keyword usage and provide a cross-
reference to indicate in which test cases and composite keywords each keyword is used.

c) During any syntax checking the Keyword-driven editor should check that only defined keywords are used
in test cases

NOTE 1 For keywords that have parameters, the Keyword-driven editor should check the correctness of each
parameter count, and type.

NOTE 2 The parameter count is the number of parameters which are provided when using a keyword. Examples for
parameter types can be (not limited to) a number, text string or something as complex as an address.

d) Undefined keywords should be rejected or at least marked as undefined by the Keyword-driven editor.

e) There should be a capability to define exception handling (e.g. if an exception occurs on test execution, it
should be possible to define which clean-up steps are executed) within the Keyword-driven editor.

f) The Keyword-driven editor should allow auto-completion or drag and drop for allowed keywords and their
parameters.

g) The Keyword-driven editor should support versioning of keyword test cases.

7.4.4 Decomposer and data sequencer

Recommendations that apply to the decomposer and data sequencer include the following:

a) The decomposer and data sequencer should allow users to implement new keywords (hierarchical
keywords) using existing keywords.

b) The decomposer and data sequencer should allow users to create hierarchical structured data from
values or other structured data.

7.4.5 Manual test assistant

Recommendations that apply to the manual test assistant include the following:

a) The manual test assistant should provide the capability to attach screenshots or other outputs of the test
item to the test log.

7.4.6 Tool bridge

No advanced attributes are defined for the tool bridge.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

32 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

7.4.7 Test execution environment and execution engine

Recommendations that apply to the test execution environment and execution engine include the following:

a) Keyword execution code should be able to read, store and process data from test items.

b) Variable name space support should be provided.

NOTE 1 Variables defined in configuration files for individual applications could otherwise conflict if the keywords
are used in the same test case i.e. a multi- application test case.

c) Context switching when moving between applications in a test case should be supported.

d) Implementations should manage the switch between namespaces (e.g. when changing application
references).

e) Testing that multiple users of an application can access the same shared data in parallel should be
supported.

f) The execution engine should handle blocked keywords on the test item by continuing test execution with
the next appropriate keyword (see 5.3.4)

NOTE 2 The next appropriate keyword is either defined by the test designer, or, if no such definition has been done,
the next keyword in the test case.

g) The execution engine should be capable of handling keywords with attributes such as "may be blocked"
and "must not be blocked" (see 5.3.4)

h) The execution engine should support data-driven tests.

NOTE 3 This includes, at a minimum, a looping construct that allows iteration over a set of one or more keywords,
using data values read from an external data file. See 6.4 for a detailed discussion.

i) There should be a capability to define conditional actions.

j) Support for an application level configuration file should be implemented.

NOTE 4 The configuration file contains zero or more variable/value pairs. The scope of the variables extends to all
tests in the test set that executes against the specified test item.

k) An implementation should support at least one instance of a configuration, but is free to support a
scheme where more than one configuration file is used.

l) When an exception is handled, there should be a capability to skip actions and ensure that defined clean-
up steps are executed.

NOTE 5 This includes the ability for the keyword execution code to request that the test case abort, i.e. those
subsequent keywords should not be executed, usually as a result of an unrecoverable situation detected in the requesting
keyword.

m) Each execution code for a keyword should be able to allocate the information needed to perform the
required actions, such as input parameters or the object of the action. Each step contains all information
for performing the action.

n) The execution engine should be able to verify whether keywords received by tables, test management
tool etc., match their keyword execution code by comparing count and type of parameters.

o) The execution engine should ensure that all loops in keyword test cases are restricted in a way that
infinite loops are prevented.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

33

p) The execution engine should support loops limited by a given number of passes.

q) The execution engine should support loops limited by a fixed time period.

EXAMPLE Limit a loop to wait for a maximum time of 2 seconds, until an event occurs or is expected not to happen
anymore.

7.4.8 Keyword library

Recommendations that apply to the keyword library include the following:

a) The keyword library should support the construction of composite keywords from keywords.

b) The keyword library should support versioning of keywords.

c) The keyword library should support the implementation of aliasing, synonyms and internationalization to
facilitate the creation of test cases.

7.4.9 Test data support

Recommendations that apply to the test data support provided by the Keyword-Driven Testing framework
include the following:

a) The framework should support versioning of test data.

b) The framework should allow the definition of hierarchical data types.

7.4.10 Script repository

Recommendations that apply to the script repository include the following:

a) The framework should support versioning of keyword execution code.

8 Data interchange

Keyword-Driven Testing can be supported by software tools which are components of the Keyword-Driven
test framework. The application of the tools requires the capability of the tools to receive (input) and provide
(output) the necessary data. The requirements on test data interchange are discussed in this clause.

Keyword-Driven Test data can be interchanged between tools. Data interchange between humans and a
software tool, mostly at the user interface, will not be addressed here.

NOTE The term "tool" can refer to both commercial tools and custom-built (non-commercial) parts a framework.

Data interchange in Keyword-Driven Testing should be done by using a standard published by an
internationally-recognized standardization body (e.g. ISO, IEEE or OMG).

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

34 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Annex A
(normative)

Conventions

The following are conventions for keywords:

a) Keywords should contain a verb.

b) Keywords should use the imperative form.

c) Keywords shall provide a description of the associated set of actions.

d) Keyword descriptions should be unambiguous.

e) Keywords should be defined in a way that they are understandable by the stakeholders who will use them
when designing test cases.

NOTE 1 This can be verified by reviewing the keywords with the stakeholders.

f) Every keyword shall be unique in its meaning within a framework.

The following example is meant to illustrate items a) to f).

EXAMPLE The keyword "pressButton" contains a verb (a) in imperative form (b). The description could be "This
keyword is used to trigger an element of class <button> in the graphical user interface" (c). If it is associated with a
parameter that identifies the button (e.g. "pressButton <cancel>" it is unambiguous (d)). This keyword is assumed to be
understandable (e) by English speaking stakeholders, as the words "press" and "button" in the keyword's name are taken
from the testers' usual vocabulary. Uniqueness of meaning (f) is given as long as no other keyword is introduced which
refers to the same activities.

NOTE 2 Natural language can be ambiguous, contain synonyms and homonyms, and can result in unclear and
ambiguous test cases.

NOTE 3 Deriving keywords from programming languages is not advisable. Programming languages can be too
abstract or difficult to understand. Knowledge of a programming language by the domain experts who will specify the test
cases cannot be assumed.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

35

Annex B
(informative)

Benefits and Issues of Keyword-Driven Testing

B.1 General benefits of Keyword-Driven Testing

By composing all of the test cases from a fixed and defined set of keywords, the benefits can include the
following:

 Keywords can be defined in natural language meaning that, test cases can be written with more or less
detail, depending on the project's needs.

 Test cases become clear and understandable. This supports efficient manual test execution.

 Using unambiguous and precisely defined keywords allows the option to select whether the execution of
a test case is done manually, or is done with automation. In the case of automation, it is expected that the
keywords will be implemented as keyword-scripts.

 Testers working at the business level do not require technical understanding of the test automation
framework to be able to create and edit test cases.

 Testers working at the technical level can implement or perform keyword-driven test cases, even if they
have limited or no understanding of the business domain.

 Testers on a technical level can implement test cases using a language that is understandable to domain
experts and that can be reviewed by them for business correctness. If this is done, then Keyword-Driven
Testing can help to close a frequently perceived gap between the business level and the technical level.

 Maintenance of the keyword scripts at the technical level is unlikely to affect the test cases. So, in general,
there is no need in re-specifying or re-formulating the keyword test case if the technical implementation of
the keywords is adjusted.

 Sensitivity to changes (which can create the need for maintenance effort) is reduced.

 Portability of test suites is easier to achieve, (e.g. if a similar system with almost the same business cases
has to be tested then many of the keywords can be reused).

 Test cases composed of keywords can be created faster than those written in natural language.

 Refactoring of test cases is cheaper.

B.2 Benefits of Keyword-Driven Testing for test automation

Benefits of Keyword-Driven Testing in the case of test automation can include:

 Automated functional tests can be implemented before the test item actually exists, either by using
existing keyword libraries with their corresponding automation scripts, or by defining new keywords and
adding the automation scripts later as the test interface is defined.

 A limited set of keywords implies a limited effort for implementing test automation, (e.g. usually, one
automated keyword script for each keyword will be sufficient).

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

36 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

 As long as test cases are constructed from the established set of keywords, once these keywords have
been implemented, new test cases do not need any additional implementation effort to be automated.

 Maintenance of test cases for business reasons will not affect the implementation of the keyword scripts,
as long as the set of keywords and the semantics of the keywords are not changed.

B.3 Benefits of Keyword-Driven Testing for manual testing

When using Keyword-Driven Testing with manual testing the benefits can include the following:

 Faster test execution can be achieved because the tester remembers the functionality of a reused
keyword and no interpretation effort is needed for reused keywords.

 Testers are guided more precisely to achieve test-to-test repeatability and consistency.

NOTE Keyword-Driven Testing is one approach of gaining these benefits. There can be other approaches to
achieving similar benefits.

B.4 Possible issues with Keyword-Driven Testing

Using Keyword-Driven Testing can result in additional costs and also in a delay in constructing test cases
which can equate to higher project costs. In later project phases, these initial investments can pay off due to
the benefits listed earlier in this annex, including faster implementation of additional test cases and saving
time when editing test cases. Realizing these benefits may be more difficult for short-term projects that only
require a very limited number of test cycles.

Using Keyword-Driven Testing instead of traditional test specification in natural language affects project costs.
While the benefits mentioned in the previous clauses of this annex are expected to reduce the project costs,
the following possible issues may add to the project efforts:

 In the initial phase, when Keyword-Driven Testing is started, keywords need to be identified, and in case
of desired test automation, implemented and tested. This is a considerable additional effort that needs to
be considered in planning.

 Personnel has to be trained to use keywords for test case specification.

 Continuous maintenance and support of the keyword library will require support staff, budget and time to
be assigned. These will need to be considered when designing the keyword library. The additional effort
may result in delay for constructing test cases.

NOTE The additional effort pays off the more often the keywords and the implementation can be reused.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

37

Annex C
(informative)

Getting started with Keyword-Driven Testing

C.1 General

This annex provides assistance for applying Keyword-Driven Testing. It is offered to help those who do not
have experience with Keyword-Driven Testing but want to learn how to start doing it.

In many cases, Keyword-Driven Testing will be done by performing two major activities that are described in
the following subclauses:

 Identifying Keywords

 Composing Test Cases

Although these activities can be conducted sequentially, they will often be applied iteratively or concurrently.
This is especially true if Keyword-Driven Testing is already established, and, while defining new test cases,
the test designer recognizes the need for further Keywords.

However, in principle, both activities are required, and when starting Keyword-Driven Testing, it is advisable to
focus on these activities.

C.2 Identifying Keywords

Keyword-Driven Testing requires the identification and definition of Keywords.

There are several sources which can be used to identify Keywords, which include the following:

a) Exploratory testing
During exploratory testing, the tester observes which steps are performed. Some steps are related and
are performed together. A new keyword is defined by assigning a meaningful name to this collection of
steps.

If the sequence of steps can be used with different data, the keyword will take parameters according to
that data.

To document that keyword, the name, the steps, a description, and when applicable, the parameters are
noted. Once these activities are completed, when defining new test cases, instead of using the steps, the
name of the keyword will be used.

b) Business experts
Keywords can also be defined by interviewing business experts. A test analyst asks questions of the
business expert. These questions can be "what should the application do?", "how can I verify proper
behaviour?" or "what needs to be tested?". The answers provided by the business experts will naturally
be formulated in a business or domain related language. A test analyst can now identify keywords by
finding core terms which probably occur frequently.

It is possible that there are different terms (used by business experts) referring to the same set of
activities; a test analyst needs to be aware of that and try to identify duplicates.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

38 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Starting from the names of the keywords which have been agreed on with the business experts, the test
analyst needs to work out which steps are involved with that keyword. The documentation is performed
as in a) above.

c) Test interface
Keywords can also be defined starting from the test interface. As the number of interface elements is
limited and usually small, a limited number of keywords can be defined addressing these interface
elements. And contrary to a) and b) above, which define high-level keywords on a domain layer, this
approach will define low-level keywords on a test interface layer.

This approach can be rewarding if there is a focus on test automation, as the final limited set of keywords
can be matched with keyword execution code. If a proper Keyword-Driven test framework is available,
specified test cases can be available as automated tests almost immediately. The documentation is
performed as in a) above.

d) Documented test procedures and test cases
Available test procedures and test cases can also be a valuable source of keywords. The actions in the
test cases are examined. As a first step, each action can be treated as a new keyword. If two or more of
these keywords turn out to refer to the same activities, they will be replaced by only one keyword, which
best describes the activities.

If some of the keywords only occur in a certain sequence with others, they can be replaced either by one
higher level keyword, or by a hierarchical keyword. The documentation is performed as for a) above.

It can be sufficient to use only one of these sources, but usually information from several sources is used.

In all cases, it can happen that the created pool of keywords is not sufficient to describe test cases, as there
may be activities that were not recognized as requiring a keyword. These "gaps" will be filled by defining the
missing keywords as test effort progresses.

C.3 Composing test cases

Once a basic set of keywords has been defined, these keywords can be used to describe test cases.

The test cases first need to be identified using test techniques as defined in ISO/IEC/IEEE 29119-4, and along
with the process steps defined in ISO/IEC/IEEE 29119-2 (e.g. the activities of TD4 which are documented
according to ISO/IEC/IEEE 29119-3).

While writing down the actions for the test cases, instead of describing the necessary activities in natural
language, the predefined keywords are used.

If several test cases share the same sequence of actions or keywords, but their test data is different, they can
be joined into one keyword test case along with different sets of test data.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

39

Annex D
(informative)

Roles and Tasks

D.1 Overview – Roles and Tasks

A sound framework for Keyword-Driven Testing allows different tasks to be performed by different people,
which can require different skills, such as test automation skills for the test interface layer, and business
knowledge or test skills for the domain layer. This clause describes different roles in Keyword-Driven Testing.

NOTE 1 More roles can be involved in Keyword-Driven Testing or in the test process in general. In this clause, only
those roles which are specific for the division of labour supported by Keyword-Driven Testing are discussed.

A single person can be assigned one, several or even all of these roles; but for best efficiency, and to reflect
the different capabilities of team members, it can be advisable to assign the roles to different people. This is
especially helpful in cases where a single person with all the required skills is not available.

NOTE 2 The following roles can be named differently in practice and the roles' activities can vary.

D.2 Domain expert

The domain expert is often the actual or future user of the test item. A domain expert has in-depth knowledge
of how the test item should behave. This knowledge can be focussed on business cases, but can also reflect
technical aspects. A person assuming this role ideally should have basic knowledge of test techniques and
processes.

Tasks for the domain expert can include the following:

 Provide parts of the test basis by defining use cases, business cases, or paths through the application
which need to be considered.

 Design test cases, and contribute to the test design specification.

 Identify business keywords.

The domain expert will closely cooperate with the test designer to perform these tasks.

D.3 Test designer

The test designer analyses complex use cases, requirements documents, and specifications. From these, the
test designer derives test cases and subsequently the useful business level keywords. Therefore it is crucial to
be able to distinguish relevant and irrelevant information.

The test designer should be in close dialogue with a subject matter expert in addition to analysing
requirements or other product information (operation concepts, user guides, etc.) in order to derive useful
business-level keywords.

Tasks for the test designer can include the following:

 Define keywords and their interfaces.

 Specify keywords composition and application in test cases.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

40 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

 Create test cases based on the test basis.

 Rework any rough test cases from domain experts to create test cases and test procedure specifications.

The test designer will closely cooperate with the domain expert to make sure that keywords reflect the
domain's language and the test cases are appropriate.

The test designer will closely cooperate with the test automation expert to make sure that the interfaces of the
keywords are consistent and that the keyword execution code reflects the keywords in the right way.

D.4 Test automation expert

This role is only needed if test execution is to be automated.

The test automation expert needs to have experience in programming and knowledge about the test tools.
The test automation expert needs to understand the scripting languages used in the framework which
supports the automated test execution. Furthermore experience as a tester is beneficial and simplifies
communication with other testers.

Tasks for the test automation expert can include the following:

 Implement the low-level keywords as executables and help ensure their functionality for test automation.

 Build the framework by selecting and combining appropriate tools on a technical level by adopting or
implementing libraries.

 Together with the test designer, the test automation expert decides how to combine low-level keywords
with higher level keywords and provides the technical means to support this from the automation side.

 Maintain test implementation scripts or the relevant parts of the scripts help ensure the availability and
reliability of the test automation to avoid making a guarantee.

The test automation expert will closely cooperate with the test designer.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

41

Annex E
(informative)

Basic keywords

E.1 Overview

This annex provides a basic list of keywords as an example. These keywords can be applied on a GUI as a
test interface. The set of keywords is supposed to be generic and usable for most applications on this test
interface. In practice, a test item may require more or different keywords than provided here. Therefore this
set of keywords is extendable.

This set of keywords can be useful as an example for other test interfaces, and is offered as a quick start for
using Keyword-Driven Testing.

E.2 Basic keywords for a GUI

In the following, basic keywords are listed for testing a GUI. A GUI typically has dialogs that are distinguished
by unique titles. Within a dialog there are various GUI-objects. The dialog and its GUI-objects are identified by
an identifier (id).

Keyword Description

clearContext (id) Removes the context from a component.

Parameters:
id (IN): id of the component

click (id) Simple click with left mouse button on a given component.

Parameters:
id (IN): id of the target component

clickWithOptions (id,
MOUSE_BUTTON, times,
MODIFIER, x, y)

Extended click with additional options on a given component.

Parameters:
id (IN): id of the target component
MOUSE_BUTTON (IN): one of the values which are defined in parameter
MOUSE_BUTTON
times (IN) OPTIONAL: how many times to click
MODIFIER (IN) OPTIONAL: one of the values which are defined in
parameter MODIFIER
x (IN) OPTIONAL: x-coordinate relative in component
y (IN) OPTIONAL: y-coordinate relative in component

doubleClick (id) Double click with left mouse button on a given component.

Parameters:
id (IN): id of the target component

drag (id, item,
MOUSE_BUTTON, KEY)

Drag.

The parameter item is provided for selecting the drag source from a tree or
list.
Other components are normally not dragable.

Parameters:

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

42 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Keyword Description

id (IN): id of the target component
item (IN) OPTIONAL: in case of a tree or list the id of the treeNode or the
listItem
MOUSE_BUTTON (IN): one of the values which are defined in parameter
MOUSE_BUTTON
KEY (IN): one of the values which are defined in parameter KEY

drop (id, item) Drop.

Parameters:
id (IN): id of the target component
item (IN) OPTIONAL: in case of a tree or list the id of the treeNode or the
listItem

getCaption (id,
varCaptionValue)

Writes the caption of target component (id) into varCaptionValue.

Parameters:
id (IN): id of the target component
varCaptionValue (IN): variable with caption of component

getProperty (id,
PROPERTY_NAME,
varPropertyValue)

Writes the value of the given property (PROPERTY_NAME) of the target
component (id) into varPropertyValue.

HINT: In case of no hit the interaction fails and the parameter gets the value
UNDEFINED.

Parameters:
id (IN): id of the target component
PROPERTY_NAME (IN): one of the properties which are defined in
parameter PROPERTY_NAME
varPropertyValue (IN): variable with value of property

getText (id, varText) Writes the text of the target component (id) into varText.

Parameters:
id (IN): id of the target component
varText (IN): variable with text of component

moveMouse (target_id,
target_item)

Move the mouse to the component with id target_id.

Parameters:
target_id (IN): id of the target component
target_item (IN) OPTIONAL: in case of a tree or list the optional id of the
treeNode or the listItem

openContextMenu (id) Opens the context menu of the given component.

Parameters:
id (IN): id of the component

pressKey (id, MODIFIER, KEY) Presses a key or key combination (with modifier).

Please note: this interaction is intended for testing keyboard commands and
shortcuts. For entering text into a text area or text field, please use the
"setText" interaction instead.

Parameters:
id (IN): id of the target component or the value "UNUSED" in which case the
key press happens on the currently focussed component
MODIFIER (IN) OPTIONAL: a combination of one or more modifier keys
(such as "shift" or "alt")
KEY (IN): the key to be pressed

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

43

Keyword Description

setContext (id) Sets the context 'passively' for the given component (programming
construct).
IMPORTANT: This is in contrast to setWindowActive which brings a window /
dialog 'actively' to the foreground.

Parameters:
id (IN): id of the component

setFocus (id) Sets the focus on the given component.

IMPORTANT: For cells, tree items, list items and menu items it isn't possible
to set the focus. The focus can only be set for tables, trees, lists and menus,
respectively.

Parameters:
id (IN): id of the component

setText (id, text) Sets or clears text in the given component.

Parameters:
id (IN): id of the component
text (IN): the text

verifyCaption (id,
OPTION_PATTERN_MATCHING,
expectedCaptionValue)

Verifies the expected caption (expectedCaptionValue) of the target
component (id) regarding search algorithm
(OPTION_PATTERN_MATCHING).

Parameters:
id (IN): id of the target component
OPTION_PATTERN_MATCHING (IN): specifies the format of search
algorithm
expectedCaptionValue (IN): expected caption

verifyProperty (id,
PROPERT_NAME,
OPTION_PATTERN_MATCHING,
expectedPropertyValue)

Verifies the expected property value (expectedPropertyValue) of the target
component (id) regarding search algorithm
(OPTION_PATTERN_MATCHING).

Parameters:
id (IN): id of the target component
PROPERTY_NAME (IN): one of the properties which are defined in
parameter PROPERTY_NAME
OPTION_PATTERN_MATCHING (IN): specifies the format of search
algorithm
expectedPropertyValue (IN): variable with value of property

verifyText (id,
OPTION_PATTERN_MATCHING,
expectedCaptionText)

Verifies the expected text (expectedText) of the target component (id)
regarding search algorithm (OPTION_PATTERN_MATCHING).

Parameters:
id (IN): id of the target component
OPTION_PATTERN_MATCHING (IN): specifies the format of search
algorithm
expectedCaptionText (IN): expected caption

waitForExist (id,
maxTimeToWait)

Waits until a component exist.

Parameters:
id (IN): id of the target component
maxTimeToWait (IN): waiting period in milliseconds

waitForNotExist (id, Waits until a component does not exist.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

44 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Keyword Description

maxTimeToWait) Parameters:
id (IN): id of the target component
maxTimeToWait (IN): waiting period in milliseconds

Table E.1 — Example of generic basic keywords

There are further GUI objects that require specific, specialized or extensible keywords.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

45

Examples can be found in the table below:

Keyword Description

selectMenuItem(id,
OPTION_NUMBER_OR_NAME,
menuItem)

Selects a menu item (depends on value of
OPTION_NUMBER_OR_NAME).

Parameters:
id (IN): id of the target menu
OPTION_NUMBER_OR_NAME (IN): defines whether the following
parameter is defined by its name or number
menuItem (IN): name or number of menu item dependent on value of
OPTION_NUMBER_OR_NAME

selectListItem (id, MODIFIER,
OPTION_NUMBER_OR_NAME,
listItem)

Selects one list item. MODIFIER allows to define a multiselect
interaction by repeating this interaction. The list items can be given by
name or number (dependent on the value of
OPTION_NUMBER_OR_NAME) .
A list can be a list view, a combobox, a dropdown list, radio button or
tabcard.

Parameters:
id (IN): id of the target list
MODIFIER (IN) OPTIONAL: one of the values which are defined in
parameter MODIFIER
OPTION_NUMBER_OR_NAME (IN): defines whether the following
parameter is defined by its name or number
listItem (IN): name or number of list item dependent on value of
OPTION_NUMBER_OR_NAME

startApplication
(currentClientID,
propertyFile)

Starts the application, using a property file for application settings. The
property file is expected to be in the directory properties.

Parameters:
currentClientID (IN): id of the application
propertyFile (IN): filename of the property file

Table E.2 — Example of specialized basic keywords

E.3 Example application of basic keywords

The following example shows a keyword test case structured in three layers: low-level keywords are used at
the test interface layer, an intermediate layer combines the low-level keywords to an application-related
vocabulary, and business keywords use these keywords from the intermediate layer at the domain layer.

Each keyword is written in a function-like style, i.e. it consists of a unique name followed by none, one or more
parameters placed in braces. The parameters used at the domain layer are passed through the intermediate
layer to the test interface layer.

This test of a car’s configuration program addresses the use case for configuring a car with some accessories.
As a final action, the calculated price will be verified.

In practice, in this example a test case would be written using only domain layer keywords. The other layers
are provided for a better understanding.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

46 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

domain layer intermediate layer test interface layer

startCarConfigurator

(“login”, “password”, “english”)

startCarConfiguratorCmdLine()

startApplication (“carConfigurator”,
“E:\CarConfigurator.ini”)

login (“login”, “password”) setText (“userField”, “login”)

setText (“pwdField”, “password”)

click (“loginBtn”)

setLanguage (“english”)

selectMenuItem (“mainMenu”,
NAME, “Language”)

selectMenuItem (“menuLanguage”,
NAME, “english”)

selectVehicle

(“Rolo”, “red”)

selectTabcard (“Cars”)

setContext (“carConfig”)

selectListItem (“tabbedPane”,
UNUSED, NAME, “Vehicles”)

selectVehicleByNameAndColour (“Rolo”, “red”)

selectListItem (“vehicleList”,
UNUSED, NAME, “Rolo”)

selectListItem (“colourList”,
UNUSED, NAME, “red”)

selectAccessories

(“[Steering wheel, brown, leather]”,

“[Mats, black, textile]”)

selectTabcard (“Accessories”)

setContext (“carConfig”)

selectListItem (“tabbedPane”,
UNUSED, NAME, “Accessories”)

selectAccessoriesByNameColourMaterial
(“Steering wheel”, “brown”, “leather”)

selectListItem
(“accessoryNameList”, UNUSED,
NAME, “Steering wheel”)

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

47

domain layer intermediate layer test interface layer

selectListItem
(“accessoryColourList”, UNUSED,
NAME, “brown”)

selectListItem
(“accessoryMaterialList”, UNUSED,
NAME, “leather”)

click (“addAccessoryBtn”)

selectAccessoriesByNameColourMaterial

(“Mats”, “black”, “textile”)

selectListItem
(“accessoryNameList”, UNUSED,
NAME, “Mats”)

selectListItem
(“accessoryColourList”, UNUSED,
NAME, “black”)

selectListItem
(“accessoryMaterialList”, UNUSED,
NAME, “textile”)

click (“addAccessoryBtn”)

verifyVehiclePrice

(“20.000”, “$”)

verifyCalculatedPrice (“20.000”, “$”)

verifyProperties (“calculatedPrice”,
“InnerText”, “=”, “20.000”)

verifyProperties (“priceCurrency”,
“InnerText”, “=”, “$”)

closeCarConfigurator ()

closeApplication (“CarConfigurator”)

selectMenuItem (“mainMenu”,
NAME, “File”)

selectMenuItem (“fileMenu”, NAME,
“Exit”)

Table E.3 — Example test case using basic keywords as part of composite keywords

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

48 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

49

Annex F
(informative)
Examples

F.1 Overview

This annex provides supplemental examples on the application of Keywords. The examples are provided
using different style and granularity to give an idea of the possible variety of different implementations of
Keyword-Driven Testing.

F.2 Example: test procedure from ISO/IEC/IEEE 29119-3

This example shows how the test procedure example from ISO/IEC/IEEE 29119-3, Annex K.2 could be
changed to be keyword based.

Used keywords:

Keyword Parameter Description

StartUp Set the apparatus ready for
sampling analysis.

PlaceNcsSample <value> Place NCS samples with the value
in parameter <value> in the
carousel

StartAnalysis Start analysis procedure

WaitForAnalysis <time> Wait for analysis to be completed;
maximum wait time: <time>
seconds

CheckResult <value >

<testcase>

Check that the analysis result
equals parameter <value>; log
number of test cases as provided
in parameter <testcase>

Shutdown Turn off the apparatus, remove the
samples and clean up any
spillage.

Table F.1 — Keywords applied to Annex K.2 of ISO/IEC/IEEE 29119-3

NOTE The rest of Annex F.2 uses the headings and numberings as were used in ISO/IEC/IEEE 29119-3 Annex K.2

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

50 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Test procedure specification

2. Test Sets

This section describes the test sets to be executed in the first execution cycle. The sets are
ordered by feature set.

2.1 (FS1) Setup of the system

.

.

.

2.3 (FS2) Identification of compounds

ID Objective Priority Contents
I-3 Measuring range Medium Test cases 17-1 to 17-5 incl.
 …

.

.

.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

51

3.3 Test procedures

Test
Procedure
ID

Objective and Priority Estimated
Duration:

I-3 The purpose of this test procedure is to test the way the system
handles the defined measuring ranges for NCS.
Priority: Medium

Relationships to other procedures: None

Test Log
Date: Initials: Test item: OK / Not OK

Comments:

Procedure
Step no. Keyword Parameter 1 Parameter 2 Remark
1 StartUp
2 PlaceNcsSample 1
3 PlaceNcsSample 2
4 PlaceNcsSample 56
5 PlaceNcsSample 315
6 PlaceNcsSample 316
7 StartAnalysis
8 WaitForAnalysis 1
9 CheckResult "Invalid sample" 17-1
10 WaitForAnalysis 1
11 CheckResult "OK" 17-2
12 WaitForAnalysis 1
13 CheckResult "OK" 17-3
14 WaitForAnalysis 1
15 CheckResult "OK" 17-4
16 WaitForAnalysis 1
17 CheckResult "Invalid sample" 17-5
18 Shutdown

F.3 Example: Test of shopping procedure with low-level keywords

The following example shows a keyword test case composed from low-level keywords on a test interface layer.

It is written in a function-like style. The keywords are derived from the user interface and take parameters
which are placed in brackets.

This test of a shopping cart would address a Use Case such as “Choose a product and place it in the
shopping cart”. The selected product is referred to by the name "PRODUCT", which is assumed to have the

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

52 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

value "ISO/IEC/IEEE 29119-5 Keyword-Driven Testing". If this test case was iterated with different values for
"PRODUCT", the test case would become data-driven:

enterValue(“SearchField”, “Keyword-Driven Testing”)

selectObject(“Button”, “Search”)

selectObject(“ResultList”, PRODUCT)

selectObject(“Button”, “AddToShoppingCart”)

selectObject(“Button”, “ShowShoppingCart”)

verifyObject(“ShoppingCart#CONTAINS”, ”PRODUCT”)

placeItemInShoppingCart(“PRODUCT”)

verifyItemInShoppingCart(“PRODUCT”)

F.4 Example for calculator with low-level keywords

This example shows a keyword test case for a calculator, composed from low-level keywords on a test
interface layer. As opposed to the example in F.3, this keyword test case is laid out in a table with one column
for the keywords, and further column for the parameters, of which the first parameter (e.g., object identifier) is
distinguished as it defines the target of the operation.

Keyword Object Identifier Parameter

ClickButton C

ClickButton 5

ClickButton Multiplication

ClickButton 9

ClickButton Equal

Verify ResultBox 45

Table F.2 — Example for low-level keywords

F.5 Example for calculator with domain level keywords

This example is similar to the example in F.4 as it addresses the same test item and uses the same layout.

But it uses domain level Keywords, which may be composed from low-level keywords (e.g. test interface
layer) or may refer to a more complex set of actions.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

53

Keyword Object Identifier Parameter 1 Parameter 2

Multiply 5 9

Verify ResultBox 45

Multiply 0 0

Verify ResultBox 0

Multiply 5 -9

Verify ResultBox -45

Multiply -5 9

Verify ResultBox -45

Multiply -5 -9

Verify ResultBox 45

Table F.3 — Example with domain level keywords

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

54 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Annex G
Bibliography

Baker, P. et al., 2008. Model-Driven Testing. Springer, Berlin, Heidelberg, New York.

Buwalda, H., 2003. Action Figures. In: Software Testing and Quality Engineering Magazine, March/April 2003,
pp. 42 - 47.

Graham, D., and Fewster, M., 2012. Experiences of Test Automation. Addison Wesley.

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

55

ISO/IEC/IEEE 29119-5 Software Testing: Keyword-Driven Testing

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

56 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Important Notices and Disclaimers Concerning IEEE Standards Documents

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are developed within
IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (“IEEE-SA”) Standards Board.
IEEE (“the Institute”) develops its standards through a consensus development process, approved by the American National
Standards Institute (“ANSI”), which brings together volunteers representing varied viewpoints and interests to achieve the final
product. Volunteers are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE
administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not
independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its
standards.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims all
warranties (express, implied and statutory) not included in this or any other document relating to the standard, including, but not
limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy,
effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to: results; and
workmanlike effort. IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there are no other ways to
produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through
developments in the state of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on
behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any
person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of
reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the
appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS
FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard
is translated, only the English version published by IEEE should be considered the approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not
be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, or be relied
upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information
on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than
the formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation
with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents.
Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting
comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments
and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and
Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

57

where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any
person who would like to participate in revisions to an IEEE standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854 USA

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy portions of any
individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of
licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA;
+1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be
obtained through the Copyright Clearance Center.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent
rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights
in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of
Assurance, then the statement is listed on the IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html.
Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without
compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair
discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for
identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of
Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of
Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly
advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own
responsibility. Further information may be obtained from the IEEE Standards Association.

Participants: The list of IEEE participants can be accessed at the following URL: http://standards.ieee.org/downloads/29119-
5/29119-5-2016/29119-5-2016_wg-participants.pdf.

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, health, or environmental protection, or
ensure against interference with or from other devices or networks. Implementers of IEEE Standards documents are responsible
for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices
and all applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may be found under the
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” They can also
be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

http://standards.ieee.org/downloads/29119-5/29119-5-2016/29119-5-2016_wg-participants.pdf�
http://standards.ieee.org/downloads/29119-5/29119-5-2016/29119-5-2016_wg-participants.pdf�
http://standards.ieee.org/IPR/disclaimers.html�

ISO/IEC/IEEE 29119-5:2016(E)

58 © ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

Abstract: The purpose of the ISO/IEC/IEEE 29119 Software Testing standards is to define an
internationally-agreed set of standards for software testing that can be used by any organization
when performing any form of software testing. ISO/IEC/IEEE 29119-5 defines Keyword-Driven
Testing, which is an approach to describing test cases in a modular way.

This standard explains the main concepts and attributes of Keyword-Driven Testing and is
applicable to all those who want to create keyword-driven test specifications, create corresponding
frameworks, or build test automation based on keywords.
This standard defines requirements on frameworks for Keyword-Driven Testing to enable test
engineers to share their test artefacts, such as test cases, test data, keywords, or complete test
specifications. It also defines minimum requirements for tools supporting Keyword-Driven Testing
and defines requirements on a common data exchange format to ensure that tools from different
vendors can exchange their data (e.g. test cases, test data and test results).

Keywords: framework, keyword-driven testing, software testing, test automation, test specification,
verification and validation

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016 – All rights reserved
© IEEE 2016 – All rights reserved

59

ICS 35.080
ISBN (PDF) 978-1-5044-0874-5, STD20905; ISBN (Print) 978-1-5044-0875-2, STDPD20905

54

Authorized licensed use limited to: City College of New York. Downloaded on April 06,2017 at 21:08:01 UTC from IEEE Xplore. Restrictions apply.

	1 Scope
	2 Conformance
	2.1 Intended usage
	2.2 Full conformance
	2.3 Tailored conformance

	3 Normative references
	4 Terms and definitions
	5 Introduction to Keyword-Driven Testing
	5.1 Overview
	5.2 Layers in Keyword-Driven Testing
	5.2.1 Overview
	5.2.2 Domain layer
	5.2.3 Test interface layer
	5.2.4 Multiple layers

	5.3 Types of keywords
	5.3.1 Simple keywords
	5.3.2 Composite keywords
	5.3.3 Navigation/interaction (input) and verification (output)
	5.3.4 Keywords and test result

	5.4 Keywords and Data

	6 Application of Keyword-Driven Testing
	6.1 Overview
	6.2 Identifying keywords
	6.3 Composing test cases
	6.4 Keywords and data-driven testing
	6.5 Modularity and refactoring
	6.6 Keyword-Driven Testing in the Test Design Process
	6.6.1 Overview
	6.6.2 TD1 Identify Feature Sets
	6.6.3 TD2 Derive Test Conditions
	6.6.4 TD3 Derive Test Coverage Items
	6.6.5 TD4 Derive Test Cases
	6.6.5.1 Overview
	6.6.5.2 Determine pre-conditions
	6.6.5.3 Select input values
	6.6.5.4 Select actions
	6.6.5.5 Determine expected results

	6.6.6 TD5 Assemble Test Sets
	6.6.7 TD6 Derive Test Procedures

	6.7 Converting non keyword-driven test cases into Keyword-Driven Testing

	7 Keyword-Driven Testing Frameworks
	7.1 Overview
	7.2 Components of a Keyword-Driven Testing framework
	7.2.1 Overview
	7.2.2 Keyword-driven Editor
	7.2.3 Decomposer
	7.2.4 Data sequencer
	7.2.5 Manual test assistant
	7.2.6 Tool bridge
	7.2.7 Test execution environment and execution engine
	7.2.8 Keyword library
	7.2.9 Data
	7.2.10 Script repository

	7.3 Basic attributes of the Keyword-Driven Testing framework
	7.3.1 General information on basic attributes
	7.3.2 General attributes
	7.3.3 Dedicated keyword-driven editor (tool)
	7.3.4 Decomposer and data sequencer
	7.3.5 Manual test assistant (tool)
	7.3.6 Tool bridge
	7.3.7 Test execution engine
	7.3.8 Keyword library
	7.3.9 Script repository

	7.4 Advanced attributes of frameworks
	7.4.1 General information on advanced attributes
	7.4.2 General attributes
	7.4.3 Dedicated keyword-driven editor (tool)
	7.4.4 Decomposer and data sequencer
	7.4.5 Manual test assistant
	7.4.6 Tool bridge
	7.4.7 Test execution environment and execution engine
	7.4.8 Keyword library
	7.4.9 Test data support
	7.4.10 Script repository

	8 Data interchange

