Isomap
Isomap is a method for low-dimensional embedding. Isomap is used for computing a quasi-isometric, low-dimensional embedding of a set of high-dimensional data points[1].
This package defines a Isomap type to represent a Isomap calculation results, and provides a set of methods to access its properties.
ManifoldLearning.Isomap — TypeIsomap{NN <: AbstractNearestNeighbors} <: AbstractDimensionalityReductionThe Isomap type represents an isometric mapping model constructed with a help of the NN nearest neighbor algorithm.
StatsAPI.fit — Methodfit(Isomap, data; k=12, maxoutdim=2, nntype=BruteForce)Fit an isometric mapping model to data.
Arguments
data: a matrix of observations. Each column ofdatais an observation.
Keyword arguments
k: a number of nearest neighbors for construction of local subspace representationmaxoutdim: a dimension of the reduced space.nntype: a nearest neighbor construction class (derived fromAbstractNearestNeighbors)
Examples
M = fit(Isomap, rand(3,100)) # construct Isomap model
R = predict(M) # perform dimensionality reductionStatsAPI.predict — Methodpredict(R::Isomap)Transforms the data fitted to the Isomap model R into a reduced space representation.
StatsAPI.predict — Methodpredict(R::Isomap, X::AbstractVecOrMat)Returns a transformed out-of-sample data X given the Isomap model R into a reduced space representation.
References
- 1Tenenbaum, J. B., de Silva, V. and Langford, J. C. "A Global Geometric Framework for Nonlinear Dimensionality Reduction". Science 290 (5500): 2319-2323, 22 December 2000.