Locally Linear Embedding
Locally Linear Embedding (LLE) technique builds a single global coordinate system of lower dimensionality. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds [1].
This package defines a LLE type to represent a LLE results, and provides a set of methods to access its properties.
ManifoldLearning.LLE — TypeLLE{NN <: AbstractNearestNeighbors, T <: Real} <: NonlinearDimensionalityReductionThe LLE type represents a locally linear embedding model constructed for T type data constructed with a help of the NN nearest neighbor algorithm.
StatsAPI.fit — Methodfit(LLE, data; k=12, maxoutdim=2, nntype=BruteForce, tol=1e-5)Fit a locally linear embedding model to data.
Arguments
data: a matrix of observations. Each column ofdatais an observation.
Keyword arguments
k: a number of nearest neighbors for construction of local subspace representationmaxoutdim: a dimension of the reduced space.nntype: a nearest neighbor construction class (derived fromAbstractNearestNeighbors)tol: an algorithm regularization tolerance
Examples
M = fit(LLE, rand(3,100)) # construct LLE model
R = transform(M) # perform dimensionality reductionStatsAPI.predict — Methodpredict(R::LLE)Transforms the data fitted to the LLE model R into a reduced space representation.
References
- 1Roweis, S. & Saul, L. "Nonlinear dimensionality reduction by locally linear embedding", Science 290:2323 (2000). DOI:10.1126/science.290.5500.2323